Related concepts (47)
Harshad number
In mathematics, a harshad number (or Niven number) in a given number base is an integer that is divisible by the sum of its digits when written in that base. Harshad numbers in base n are also known as n-harshad (or n-Niven) numbers. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit (joy) + (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977.
17 (number)
17 (seventeen) is the natural number following 16 and preceding 18. It is a prime number. Seventeen is the sum of the first four prime numbers. Seventeen is the seventh prime number, which makes it the fourth super-prime, as seven is itself prime. It forms a twin prime with 19, a cousin prime with 13, and a sexy prime with both 11 and 23. Seventeen is the only prime number which is the sum of four consecutive primes (2, 3, 5, and 7), as any other four consecutive primes that are added always generate an even number divisible by two.
Numerical digit
A numerical digit (often shortened to just digit) is a single symbol used alone (such as "1") or in combinations (such as "15"), to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits (Latin digiti meaning fingers) of the hands correspond to the ten symbols of the common base 10 numeral system, i.e. the decimal (ancient Latin adjective decem meaning ten) digits. For a given numeral system with an integer base, the number of different digits required is given by the absolute value of the base.
10
10 (ten) is the even natural number following 9 and preceding 11. It is the first double-digit number. Ten is the base of the decimal numeral system, the most common system of denoting numbers in both spoken and written language. A collection of ten items (most often ten years) is called a decade. The ordinal adjective is decimal; the distributive adjective is denary. Increasing a quantity by one order of magnitude is most widely understood to mean multiplying the quantity by ten. To reduce something by one tenth is to decimate.
24 (number)
24 (twenty-four) is the natural number following 23 and preceding 25. 24 is an even composite number, with 2 and 3 as its distinct prime factors. It is the first number of the form 2^qq, where q is an odd prime. It is the smallest number with at least eight positive divisors: 1, 2, 3, 4, 6, 8, 12, and 24; thus, it is a highly composite number, having more divisors than any smaller number. Furthermore, it is an abundant number, since the sum of its proper divisors (36) is greater than itself, as well as a superabundant number.
Mathematical constant
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and pi occurring in such diverse contexts as geometry, number theory, statistics, and calculus. Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (pi).
18 (number)
18 (eighteen) is the natural number following 17 and preceding 19. Eighteen is a composite number, its divisors being 1, 2, 3, 6 and 9. Three of these divisors (3, 6 and 9) add up to 18, hence 18 is a semiperfect number. Eighteen is the first inverted square-prime of the form p·q2. In base ten, it is a Harshad number. It is an abundant number, as the sum of its proper divisors is greater than itself (1+2+3+6+9 = 21). It is known to be a solitary number, despite not being coprime to this sum.
11 (number)
11 (eleven) is the natural number following 10 and preceding 12. It is the first repdigit. In English, it is the smallest positive integer whose name has three syllables. "Eleven" derives from the Old English ęndleofon, which is first attested in Bede's late 9th-century Ecclesiastical History of the English People. It has cognates in every Germanic language (for example, German elf), whose Proto-Germanic ancestor has been reconstructed as *ainalifa-, from the prefix *aina- (adjectival "one") and suffix *-lifa-, of uncertain meaning.
Chinese numerology
Some numbers are believed by some to be auspicious or lucky (吉利, ) or inauspicious or unlucky (不吉, ) based on the Chinese word that the number sounds similar to. The numbers 2, 3, 6, and 8 are generally considered to be lucky, while 4 is considered unlucky. These traditions are not unique to Chinese culture, with other countries with a history of Han characters also having similar beliefs stemming from these concepts. The number 0 (零, ) is the beginning of all things and is generally considered a good number, because it sounds like 良 (pinyin: liáng), which means 'good'.
Pierpont prime
In number theory, a Pierpont prime is a prime number of the form for some nonnegative integers u and v. That is, they are the prime numbers p for which p − 1 is 3-smooth. They are named after the mathematician James Pierpont, who used them to characterize the regular polygons that can be constructed using conic sections. The same characterization applies to polygons that can be constructed using ruler, compass, and angle trisector, or using paper folding. Except for 2 and the Fermat primes, every Pierpont prime must be 1 modulo 6.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.