Related concepts (22)
Geometric genus
In algebraic geometry, the geometric genus is a basic birational invariant p_g of algebraic varieties and complex manifolds. The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number h^n,0 (equal to h^0,n by Serre duality), that is, the dimension of the canonical linear system plus one. In other words for a variety V of complex dimension n it is the number of linearly independent holomorphic n-forms to be found on V.
Elliptic surface
In mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. (Over an algebraically closed field such as the complex numbers, these fibers are elliptic curves, perhaps without a chosen origin.) This is equivalent to the generic fiber being a smooth curve of genus one. This follows from proper base change.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.