In algebraic geometry, the geometric genus is a basic birational invariant p_g of algebraic varieties and complex manifolds.
The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number h^n,0 (equal to h^0,n by Serre duality), that is, the dimension of the canonical linear system plus one.
In other words for a variety V of complex dimension n it is the number of linearly independent holomorphic n-forms to be found on V. This definition, as the dimension of
H^0(V,Ω^n)
then carries over to any base field, when Ω is taken to be the sheaf of Kähler differentials and the power is the (top) exterior power, the canonical line bundle.
The geometric genus is the first invariant p_g = P_1 of a sequence of invariants P_n called the plurigenera.
In the case of complex varieties, (the complex loci of) non-singular curves are Riemann surfaces. The algebraic definition of genus agrees with the topological notion. On a nonsingular curve, the canonical line bundle has degree 2g − 2.
The notion of genus features prominently in the statement of the Riemann–Roch theorem (see also Riemann–Roch theorem for algebraic curves) and of the Riemann–Hurwitz formula. By the Riemann-Roch theorem, an irreducible plane curve of degree d has geometric genus
where s is the number of singularities.
If C is an irreducible (and smooth) hypersurface in the projective plane cut out by a polynomial equation of degree d, then its normal line bundle is the Serre twisting sheaf \mathcal O(d), so by the adjunction formula, the canonical line bundle of C is given by
The definition of geometric genus is carried over classically to singular curves C, by decreeing that
p_g(C)
is the geometric genus of the normalization C′. That is, since the mapping
C′ → C
is birational, the definition is extended by birational invariance.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology.
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do is using a generic method to attack the DLP, the fastest ...
We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
While over fields of characteristic at least 5, a normal, projective and Gorenstein del Pezzo surface is geometrically normal, this does not hold for characteristic 2 and 3. There is no characterization of all such non-geometrically normal surfaces, but th ...