Summary
In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space ; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). The group depends only on the dimension n of the space, and is commonly denoted E(n) or ISO(n). The Euclidean group E(n) comprises all translations, rotations, and reflections of ; and arbitrary finite combinations of them. The Euclidean group can be seen as the symmetry group of the space itself, and contains the group of symmetries of any figure (subset) of that space. A Euclidean isometry can be direct or indirect, depending on whether it preserves the handedness of figures. The direct Euclidean isometries form a subgroup, the special Euclidean group, often denoted SE(n), whose elements are called rigid motions or Euclidean motions. They comprise arbitrary combinations of translations and rotations, but not reflections. These groups are among the oldest and most studied, at least in the cases of dimension 2 and 3 – implicitly, long before the concept of group was invented. The number of degrees of freedom for E(n) is n(n + 1)/2, which gives 3 in case n = 2, and 6 for n = 3. Of these, n can be attributed to available translational symmetry, and the remaining n(n − 1)/2 to rotational symmetry. The direct isometries (i.e., isometries preserving the handedness of chiral subsets) comprise a subgroup of E(n), called the special Euclidean group and usually denoted by E+(n) or SE(n). They include the translations and rotations, and combinations thereof; including the identity transformation, but excluding any reflections. The isometries that reverse handedness are called indirect, or opposite. For any fixed indirect isometry R, such as a reflection about some hyperplane, every other indirect isometry can be obtained by the composition of R with some direct isometry. Therefore, the indirect isometries are a coset of E+(n), which can be denoted by E−(n). It follows that the subgroup E+(n) is of index 2 in E(n).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
MATH-213: Differential geometry
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.
MATH-123(b): Geometry
The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to
Show more
Related publications (42)