Résumé
Une isométrie affine est une transformation bijective d'un espace affine euclidien dans un autre qui est à la fois une application affine et une isométrie (c'est-à-dire une bijection conservant les distances). Si cette isométrie conserve aussi l'orientation, on dit que c'est un déplacement. Si elle inverse l'orientation, il s'agit d'un antidéplacement. Les déplacements sont les composés de translations et rotations. Les réflexions sont des antidéplacements. On désigne par le plan (, plus précisément, un plan affine réel euclidien). Les applications suivantes sont des isométries de : Étant donné un vecteur l'application qui, à tout point , associe le point tel que : c'est la translation de vecteur . Sa réciproque est la translation de vecteur . Elle n'a aucun point fixe, sauf si , auquel cas c'est l'identité. Étant donné un point de et un angle orienté , l'application qui fixe et, à un point distinct de , associe l'unique point tel que et : c'est la rotation plane de centre et d'angle . Sa réciproque est la rotation de centre et d'angle . Étant donné une droite l'application qui, à tout point , associe le point tel que , où est le projeté orthogonal de sur : c'est la symétrie axiale par rapport à . On peut la définir autrement : si alors et si alors est tel que est la médiatrice de . Les symétries sont involutives. Une isométrie du plan ayant trois points fixes non alignés est l'identité. Une isométrie du plan autre que l'identité ayant au moins deux points fixes A et B est la réflexion par rapport à la droite (AB). Une isométrie du plan ayant un unique point fixe A est une rotation de centre A. Si une application d'un espace euclidien dans lui-même conserve les distances alors elle est affine, et son application linéaire associée conserve la norme donc est un automorphisme orthogonal. Réciproquement, toute application affine dont l'application linéaire associée est un automorphisme orthogonal est une isométrie affine. Les automorphismes orthogonaux sont caractérisés par le fait que leur matrice dans une base orthonormée est une matrice orthogonale.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.