Conditional sentenceConditional sentences are natural language sentences that express that one thing is contingent on something else, e.g. "If it rains, the picnic will be cancelled." They are so called because the impact of the main clause of the sentence is conditional on the dependent clause. A full conditional thus contains two clauses: a dependent clause called the antecedent (or protasis or if-clause), which expresses the condition, and a main clause called the consequent (or apodosis or then-clause) expressing the result.
Rule of inferenceIn philosophy of logic and logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion.
Many-valued logicMany-valued logic (also multi- or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. Classical two-valued logic may be extended to n-valued logic for n greater than 2. Those most popular in the literature are three-valued (e.g.
Paradoxes of material implicationThe paradoxes of material implication are a group of true formulae involving material conditionals whose translations into natural language are intuitively false when the conditional is translated as "if ... then ...". A material conditional formula is true unless is true and is false. If natural language conditionals were understood in the same way, that would mean that the sentence "If the Nazis had won World War Two, everybody would be happy" is vacuously true.
Functional completenessIn logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates.
False (logic)In logic, false or untrue is the state of possessing negative truth value and is a nullary logical connective. In a truth-functional system of propositional logic, it is one of two postulated truth values, along with its negation, truth. Usual notations of the false are 0 (especially in Boolean logic and computer science), O (in prefix notation, Opq), and the up tack symbol . Another approach is used for several formal theories (e.g., intuitionistic propositional calculus), where a propositional constant (i.
Reflexive relationIn mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.
Propositional formulaIn propositional logic, a propositional formula is a type of syntactic formula which is well formed and has a truth value. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as p and q, using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example: (p AND NOT q) IMPLIES (p OR q).
Logical biconditionalIn logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientaiment, is the logical connective used to conjoin two statements and to form the statement " if and only if " (often abbreviated as " iff "), where is known as the antecedent, and the consequent. Nowadays, notations to represent equivalence include . is logically equivalent to both and , and the XNOR (exclusive nor) boolean operator, which means "both or neither".
Non-classical logicNon-classical logics (and sometimes alternative logics) are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is done, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth. Philosophical logic is understood to encompass and focus on non-classical logics, although the term has other meanings as well.