Summary
Gravimetric analysis describes a set of methods used in analytical chemistry for the quantitative determination of an analyte (the ion being analyzed) based on its mass. The principle of this type of analysis is that once an ion's mass has been determined as a unique compound, that known measurement can then be used to determine the same analyte's mass in a mixture, as long as the relative quantities of the other constituents are known. The four main types of this method of analysis are precipitation, volatilization, electro-analytical and miscellaneous physical method. The methods involve changing the phase of the analyte to separate it in its pure form from the original mixture and are quantitative measurements. The precipitation method is the one used for the determination of the amount of calcium in water. Using this method, an excess of oxalic acid, H2C2O4, is added to a measured, known volume of water. By adding a reagent, here ammonium oxalate, the calcium will precipitate as calcium oxalate. The proper reagent, when added to aqueous solution, will produce highly insoluble precipitates from the positive and negative ions that would otherwise be soluble with their counterparts (equation 1). The reaction is: Formation of calcium oxalate: Ca2+(aq) + C2O42- → CaC2O4 The precipitate is collected, dried and ignited to high (red) heat which converts it entirely to calcium oxide. The reaction is pure calcium oxide formed CaC2O4 → CaO(s) + CO(g)+ CO2(g) The pure precipitate is cooled, then measured by weighing, and the difference in weights before and after reveals the mass of analyte lost, in this case calcium oxide. That number can then be used to calculate the amount, or the percent concentration, of it in the original mix. Volatilization methods can be either direct or indirect. Water eliminated in a quantitative manner from many inorganic substances by ignition is an example of a direct determination. It is collected on a solid desiccant and its mass determined by the gain in mass of the desiccant.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.