Concept

Space hierarchy theorem

In computational complexity theory, the space hierarchy theorems are separation results that show that both deterministic and nondeterministic machines can solve more problems in (asymptotically) more space, subject to certain conditions. For example, a deterministic Turing machine can solve more decision problems in space n log n than in space n. The somewhat weaker analogous theorems for time are the time hierarchy theorems. The foundation for the hierarchy theorems lies in the intuition that with either more time or more space comes the ability to compute more functions (or decide more languages). The hierarchy theorems are used to demonstrate that the time and space complexity classes form a hierarchy where classes with tighter bounds contain fewer languages than those with more relaxed bounds. Here we define and prove the space hierarchy theorem. The space hierarchy theorems rely on the concept of space-constructible functions. The deterministic and nondeterministic space hierarchy theorems state that for all space-constructible functions f(n), where SPACE stands for either DSPACE or NSPACE, and o refers to the little o notation. Formally, a function is space-constructible if and there exists a Turing machine which computes the function in space when starting with an input , where represents a string of n consecutive 1s. Most of the common functions that we work with are space-constructible, including polynomials, exponents, and logarithms. For every space-constructible function , there exists a language L that is decidable in space but not in space . The goal is to define a language that can be decided in space but not space . The language is defined as L: For any machine M that decides a language in space , L will differ in at least one spot from the language of M. Namely, for some large enough k, M will use space on and will therefore differ at its value. On the other hand, L is in . The algorithm for deciding the language L is as follows: On an input x, compute using space-constructibility, and mark off cells of tape.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.