Caloric theoryThe caloric theory is an obsolete scientific theory that heat consists of a self-repellent fluid called caloric that flows from hotter bodies to colder bodies. Caloric was also thought of as a weightless gas that could pass in and out of pores in solids and liquids. The "caloric theory" was superseded by the mid-19th century in favor of the mechanical theory of heat, but nevertheless persisted in some scientific literature—particularly in more popular treatments—until the end of the 19th century.
James Prescott JouleJames Prescott Joule (dʒuːl; 24 December 1818 - 11 October 1889) was an English physicist, mathematician and brewer, born in Salford, Lancashire. Joule studied the nature of heat, and discovered its relationship to mechanical work. This led to the law of conservation of energy, which in turn led to the development of the first law of thermodynamics. The SI derived unit of energy, the joule, is named after him. He worked with Lord Kelvin to develop an absolute thermodynamic temperature scale, which came to be called the Kelvin scale.
Nicolas Léonard Sadi CarnotNicolas Léonard Sadi Carnot (nikɔla leɔnaʁ sadi kaʁno; 1 June 1796 – 24 August 1832) was a French mechanical engineer in the French Army, military scientist and physicist, often described as the "father of thermodynamics". He published only one book, the Reflections on the Motive Power of Fire (Paris, 1824), in which he expressed the first successful theory of the maximum efficiency of heat engines and laid the foundations of the new discipline: thermodynamics.
Vis vivaVis viva (from the Latin for "living force") is a historical term used to describe a quantity similar to kinetic energy in an early formulation of the principle of conservation of energy. Proposed by Gottfried Leibniz over the period 1676–1689, the theory was controversial as it seemed to oppose the theory of conservation of quantity of motion advocated by René Descartes. Descartes' quantity of motion was different from momentum, but Newton defined the quantity of motion as the conjunction of the quantity of matter and velocity in Definition II of his Principia.
Émilie du ChâteletGabrielle Émilie Le Tonnelier de Breteuil, Marquise du Châtelet (emili dy ʃɑtlɛ; 17 December 1706 – 10 September 1749) was a French natural philosopher and mathematician from the early 1730s until her death due to complications during childbirth in 1749. Her most recognized achievement is her translation of and commentary on Isaac Newton's 1687 book Philosophiæ Naturalis Principia Mathematica containing basic laws of physics. The translation, published posthumously in 1756, is still considered the standard French translation.
Stationary-action principleThe stationary-action principle – also known as the principle of least action – is a variational principle that, when applied to the action of a mechanical system, yields the equations of motion for that system. The principle states that the trajectories (i.e. the solutions of the equations of motion) are stationary points of the system's action functional. The principle can be used to derive Newtonian, Lagrangian and Hamiltonian equations of motion, and even general relativity, as well as classical electrodynamics and quantum field theory.
Gravitational energyGravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released (converted into kinetic energy) when the objects fall towards each other. Gravitational potential energy increases when two objects are brought further apart. For two pairwise interacting point particles, the gravitational potential energy is given by where and are the masses of the two particles, is the distance between them, and is the gravitational constant.
Time translation symmetryTime translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time translation symmetry is closely connected, via the Noether theorem, to conservation of energy.
Compton scatteringCompton scattering (also called the Compton effect) discovered by Arthur Holly Compton, is the scattering of a high frequency photon after an interaction with a charged particle, usually an electron. It results in a decrease in energy (increase in wavelength) of the photon (which may be an X-ray or gamma ray photon), called the Compton effect. Part of the energy of the photon is transferred to the recoiling particle.
Mechanical equivalent of heatIn the history of science, the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case, a given amount of work would generate the same amount of heat, provided the work done is totally converted to heat energy. The mechanical equivalent of heat was a concept that had an important part in the development and acceptance of the conservation of energy and the establishment of the science of thermodynamics in the 19th century.