Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In electrical engineering, particularly power engineering, voltage regulation is a measure of change in the voltage magnitude between the sending and receiving end of a component, such as a transmission or distribution line. Voltage regulation describes the ability of a system to provide near constant voltage over a wide range of load conditions. The term may refer to a passive property that results in more or less voltage drop under various load conditions, or to the active intervention with devices for the specific purpose of adjusting voltage. In electrical power systems, voltage regulation is a dimensionless quantity defined at the receiving end of a transmission line as: where Vnl is voltage at no load and Vfl is voltage at full load. The percent voltage regulation of an ideal transmission line, as defined by a transmission line with zero resistance and reactance, would equal zero due to Vnl equaling Vfl as a result of there being no voltage drop along the line. This is why a smaller value of Voltage Regulation is usually beneficial, indicating that the line is closer to ideal. The Voltage Regulation formula could be visualized with the following: "Consider power being delivered to a load such that the voltage at the load is the load's rated voltage VRated, if then the load disappears, the voltage at the point of the load will rise to Vnl." Voltage regulation in transmission lines occurs due to the impedance of the line between its sending and receiving ends. Transmission lines intrinsically have some amount of resistance, inductance, and capacitance that all change the voltage continuously along the line. Both the magnitude and phase angle of voltage change along a real transmission line. The effects of line impedance can be modeled with simplified circuits such as the short line approximation (least accurate), the medium line approximation (more accurate), and the long line approximation (most accurate). The short line approximation ignores capacitance of the transmission line and models the resistance and reactance of the transmission line as a simple series resistor and inductor.
Drazen Dujic, Andrea Cervone, Jules Christian Georges Macé, Max Dupont, Renan Pillon Barcelos
,