Concept

Topographic map (neuroanatomy)

A topographic map is the ordered projection of a sensory surface, like the retina or the skin, or an effector system, like the musculature, to one or more structures of the central nervous system. Topographic maps can be found in all sensory systems and in many motor systems. Retinotopy The visual system refers to the part of the central nervous system that allows an organism to see. It interprets information from visible light to build a representation of the world. The ganglion cells of the retina project in an orderly fashion to the lateral geniculate nucleus of the thalamus and from there to the primary visual cortex(V1); adjacent spots on the retina are represented by adjacent neurons in the lateral geniculate nucleus and the primary visual cortex. The term for this pattern of projection is topography. There are many types of topographic maps in the visual cortices, including retinotopic maps, occular dominance maps and orientation maps. Retinotopic maps are the easiest to understand in terms of topography. Retinotopic maps are those in which the image on the retina is maintained in the cortices (V1 and the LGN). In other words, if a specific region of the cortices was damaged that individual would then have a blind spot in the real world, they would not be able to see the bit of the world that corresponded to the retina damage. Orientation maps are also topographic. In these maps there are cells which have a preference to a certain orientation, the maximum firing rate of the cell will be achieved at that preference. As the orientation is moved away from the firing rate will drop. An orientation map is topographic because neighboring neural tissues have similar orientation preferences. The term retinotopic refers to the maintenance of the particular order of afferent connections from the retina along the afferent pathway via sub-cortical structures to V1 and other cortical visual areas. The primary visual cortex (V1, Brodmann's area 17) is the first cortical area to receive visual input.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
BIO-483: Neuroscience: behavior and cognition
The goal is to guide students into the essential topics of Behavioral and Cognitive Neuroscience. The challenge for the student in this course is to integrate the diverse knowledge acquired from those
Related lectures (14)
Topographic Organization in the Brain
Explores the topographic organization in the brain, focusing on sensory representations and hemodynamic neuroimaging techniques.
Preprocessing & Topographic Mapping
Covers the preprocessing pipeline for functional brain imaging and topographic mapping in sensory cortices.
Norrie Disease: Gene Therapy and Inner Ear Physiology
Explores Norrie disease, gene therapy design, and inner ear physiology, including cochlear function and hair cells.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.