Tobias SchneiderTobias Schneider is an assistant professor in the School of Engineering at EPFL, the Swiss Federal Institute of Technology Lausanne. He received his doctoral degree in theoretical physics in 2007 from the University of Marburg in Germany working on the transition to turbulence in pipe flow. He then joined Harvard University as a postdoctoral fellow. In 2012 Tobias Schneider returned to Europe to establish an independent Max-Planck research group at the Max-Planck Institute for Dynamics and Self-Organization in Goettingen. Since 2014, he is working at EPFL, where he teaches fluid mechanics and heads the 'Emergent Complexity in Physical Systems' laboratory. Tobias Schneider's research is focused on nonlinear mechanics with specific emphasis on spatial turbulent-laminar patterns in fluid flows transitioning to turbulence. His lab combines dynamical systems and pattern-formation theory with large-scale computer simulations. Together with his team, Schneider develops computational tools and continuation methods for studying the bifurcation structure of nonlinear differential equations such as those describing the flow of a fluid. These tools are published as open-source software at channelflow.ch. Publications: Google Scholar
Pierre DillenbourgA former teacher in elementary school, Pierre Dillenbourg graduated in educational science (University of Mons, Belgium). He started his research on learning technologies in 1984. In 1986, he has been on of the first in the world to apply machine learning to develop a self-improving teaching system. He obtained a PhD in computer science from the University of Lancaster (UK), in the domain of artificial intelligence applications for education. He has been assistant professor at the University of Geneva. He joined EPFL in 2002. He has been the director of Center for Research and Support on Learning and its Technologies, then academic director of Center for Digital Education, which implements the MOOC strategy of EPFL (over 2 million registrations). He is full professor in learning technologies in the School of Computer & Communication Sciences, where he is the head of the CHILI Lab: "Computer-Human Interaction for Learning & Instruction ». He is the director of the leading house DUAL-T, which develops technologies for dual vocational education systems (carpenters, florists,...). With EPFL colleagues, he launched in 2017 the Swiss EdTech Collider, an incubator with 80 start-ups in learning technologies. He (co-)-founded 4 start-ups, does consulting missions in the corporate world and joined the board of several companies or institutions. In 2018, he co-founded LEARN, the EPFL Center of Learning Sciences that brings together the local initiatives in educational innovation. He is a fellow of the International Society for Learning Sciences. He currently is the Associate Vice-President for Education at EPFL.
Yves BellouardDr. Yves Bellouard is Associate Professor in Microengineering at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, where he heads the Galatea lab and the Richemont Chair in micromanufacturing. He received a BS in Theoretical Physics and a MS in Applied Physics from Université Pierre et Marie Curie in Paris, France in 1994-1995 and a PhD in Microengineering from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland in 2000. For his PhD work, he received the Omega Scientific prize (2001) for outstanding contribution in the field of microengineering for his work on Shape Memory Alloys. Before joining EPFL in 2015, he was Associate Professor at Eindhoven University of Technologies (TU/e) in the Netherlands and prior to that, Research Scientist at Rensselaer Polytechnic Institute (RPI) in Troy, New York for about four years where he started working on femtosecond laser processing of glass materials. From 2010 until 2013, Yves Bellouard initiated and coordinated the Femtoprint project, a European research initiative aiming at investigating a table-top printer for microsystems ('3D printing of microsystems'). In 2013, he received a prestigious ERC Starting Grant (Consolidator-2012) from the European Research Council and a JSPS Fellowship from the Japan Society for the Promotion of Science. His current research interests are on new paradigms for system integration at the microscale and in particular laser-based methods to tailor material properties for achieving higher level of integration in microsystems, like for instance integrating optics, mechanics and fluidics in a single monolith. These approaches open new opportunities for direct-write methods of microsystems (3D printing). Personal website
Mohamed FarhatM. Farhat was born in Casablanca in 1962 (Moroccan citizen). He graduated at Ecole Nationale Supérieure d'Hydraulique et de Mécanique de Grenoble (France. He joined The LMH laboratory in 1986 as research assistant. He completed in 1994 a Ph.D. thesis on Cavitation. He joined the R&D department of Hydro-Quebec in Montréal (Canada) in 1995 where he was in charge of several research projects in the areas of production and transportation of hydropower and mainly the monitoring of large hydro turbines. Since 2001, he is senior scientist at the LMH laboratory, head of the cavitation group. He is also lecturer in Master and Doctoral programs. He is member of the Doctoral Committee in Mechanics.
Aurelio MuttoniAurelio Muttoni is full Professor and Head of the Structural Concrete Laboratory at the Ecole Polytechnique Fédérale de Lausanne (Switzerland). He received his diploma and PhD in civil engineering from the Swiss Federal Institute of Technology, Zurich, Switzerland, in 1982 and 1989, respectively.
His current teaching activities focus on the conceptual design of structures, theory and dimensioning of concrete structures as well as bridge design. His research group is active in the following domains: behaviour and design methods for structural concrete, conceptual design of innovative structures, shear in structural concrete, punching shear of slabs, nonlinear structural analysis including its reliability, bond between steel and concrete, aggregate interlocking, fatigue and influence of sustained loading on the concrete strength, mechanical behaviour and design concepts for ultra-high performance concrete, textile concrete and recycled concrete.
Aurelio Muttoni was the recipient of the Chester Paul Siess Award for Excellence in Structural Research in 2010 and the co-recipient of the Wason Medal for Most Meritorious Paper in 2014 of the American Concrete Institute. He is a member of the Presidium of fib (International Federation for Structural Concrete), several fib commissions and task groups and has been Project Team Leader for the second generation of EN 1992-1-1 (Eurocode for structural concrete).
Aurelio Muttoni is also cofounder and partner of the Muttoni & Fernández consulting office (www.mfic.ch). This office is active in the conceptual design, analysis and dimensioning of load-bearing structure in architecture and civil engineering constructions as well as consulting activities in the field of structural engineering.