Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Vision-Language Pre-training (VLP) has advanced the performance of many visionlanguage tasks, such as image-text retrieval, visual entailment, and visual reasoning. The pre-training mostly utilizes lexical databases and image queries in English. Previous w ...
Assoc Computational Linguistics-Acl2023
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization. Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns, elimina ...
Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, ca ...
Abstractive summarization has seen big improvements in recent years, mostly due to advances in neural language modeling, language model pretraining, and scaling models and datasets. While large language models generate summaries that are fluent, coherent, ...
We apply inverse reinforcement learning (IRL) with a novel cost feature to the problem of robot navigation in human crowds. Consistent with prior empirical work on pedestrian behavior, the feature anticipates collisions between agents. We efficiently learn ...
Over the years, clinical institutes accumulated large amounts of digital slides from resected tissue specimens. These digital images, called whole slide images (WSIs), are high-resolution tissue snapshots that depict the complex interaction of cells at the ...
Text-to-image models, such as Stable Diffusion, can generate high-quality images from simple textual prompts. With methods such as Textual Inversion, it is possible to expand the vocabulary of these models with additional concepts, by learning the vocabula ...
With the current trend of increasing complexity of industrial systems, the construction and monitoring of health indicators becomes even more challenging. Given that health indicators are commonly employed to predict the end of life, a crucial criterion fo ...
Research Publishing2023
,
Unsupervised Domain Adaptation Regression (DAR) aims to bridge the domain gap between a labeled source dataset and an unlabelled target dataset for regression problems. Recent works mostly focus on learning a deep feature encoder by minimizing the discrepa ...