Single address space operating systemIn computer science, a single address space operating system (or SASOS) is an operating system that provides only one globally shared address space for all processes. In a single address space operating system, numerically identical (virtual memory) logical addresses in different processes all refer to exactly the same byte of data. Single address-space operating systems offer certain advantages. In a traditional OS with private per-process address space, memory protection is based on address space boundaries ("address space isolation").
Control registerA control register is a processor register that changes or controls the general behavior of a CPU or other digital device. Common tasks performed by control registers include interrupt control, switching the addressing mode, paging control, and coprocessor control. When IBM developed a paging version of the System/360, they added 16 control registers to the design for what became the 360/67. IBM did not provide control registers on other S/360 models, but made them a standard part of System/370, although with different register and bit assignments.
Critical sectionIn concurrent programming, concurrent accesses to shared resources can lead to unexpected or erroneous behavior, so parts of the program where the shared resource is accessed need to be protected in ways that avoid the concurrent access. One way to do so is known as a critical section or critical region. This protected section cannot be entered by more than one process or thread at a time; others are suspended until the first leaves the critical section.
Busy waitingIn computer science and software engineering, busy-waiting, busy-looping or spinning is a technique in which a process repeatedly checks to see if a condition is true, such as whether keyboard input or a lock is available. Spinning can also be used to generate an arbitrary time delay, a technique that was necessary on systems that lacked a method of waiting a specific length of time. Processor speeds vary greatly from computer to computer, especially as some processors are designed to dynamically adjust speed based on current workload.
Process control blockA process control block (PCB), also sometimes called a process descriptor, is a data structure used by computer operating systems to store all the information about a process. When a process is created (initialized or installed), the operating system creates a corresponding process control block, which specifies and tracks the process state (i.e. new, ready, running, waiting or terminated). Since it is used to track process information, the PCB plays a key role in context switching.
Programmable interrupt controllerIn computing, a programmable interrupt controller (PIC) is an integrated circuit that helps a microprocessor (or CPU) handle interrupt requests (IRQ) coming from multiple different sources (like external I/O devices) which may occur simultaneously. It helps prioritize IRQs so that the CPU switches execution to the most appropriate interrupt handler (ISR) after the PIC assesses the IRQ's relative priorities. Common modes of interrupt priority include hard priorities, rotating priorities, and cascading priorities.
Fragmentation (computing)In computer storage, fragmentation is a phenomenon in which storage space, main storage or secondary storage, is used inefficiently, reducing capacity or performance and often both. The exact consequences of fragmentation depend on the specific system of storage allocation in use and the particular form of fragmentation. In many cases, fragmentation leads to storage space being "wasted", and in that case the term also refers to the wasted space itself.
Light-weight processIn computer operating systems, a light-weight process (LWP) is a means of achieving multitasking. In the traditional meaning of the term, as used in Unix System V and Solaris, a LWP runs in user space on top of a single kernel thread and shares its address space and system resources with other LWPs within the same process. Multiple user-level threads, managed by a thread library, can be placed on top of one or many LWPs - allowing multitasking to be done at the user level, which can have some performance benefits.
SpinlockIn software engineering, a spinlock is a lock that causes a thread trying to acquire it to simply wait in a loop ("spin") while repeatedly checking whether the lock is available. Since the thread remains active but is not performing a useful task, the use of such a lock is a kind of busy waiting. Once acquired, spinlocks will usually be held until they are explicitly released, although in some implementations they may be automatically released if the thread being waited on (the one that holds the lock) blocks or "goes to sleep".