In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
Quantum mechanics is mathematically formulated in Hilbert space or projective Hilbert space. The pure states of a quantum system correspond to the one-dimensional subspaces of the corresponding Hilbert space (and the "points" of the projective Hilbert space). For a two-dimensional Hilbert space, the space of all such states is the complex projective line This is the Bloch sphere, which can be mapped to the Riemann sphere.
The Bloch sphere is a unit 2-sphere, with antipodal points corresponding to a pair of mutually orthogonal state vectors. The north and south poles of the Bloch sphere are typically chosen to correspond to the standard basis vectors and , respectively, which in turn might correspond e.g. to the spin-up and spin-down states of an electron. This choice is arbitrary, however. The points on the surface of the sphere correspond to the pure states of the system, whereas the interior points correspond to the mixed states. The Bloch sphere may be generalized to an n-level quantum system, but then the visualization is less useful.
For historical reasons, in optics the Bloch sphere is also known as the Poincaré sphere and specifically represents different types of polarizations. Six common polarization types exist and are called Jones vectors. Indeed Henri Poincaré was the first to suggest the use of this kind of geometrical representation at the end of 19th century, as a three-dimensional representation of Stokes parameters.
The natural metric on the Bloch sphere is the Fubini–Study metric. The mapping from the unit 3-sphere in the two-dimensional state space to the Bloch sphere is the Hopf fibration, with each ray of spinors mapping to one point on the Bloch sphere.
Given an orthonormal basis, any pure state of a two-level quantum system can be written as a superposition of the basis vectors and , where the coefficient of (or contribution from) each of the two basis vectors is a complex number.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
Les étudiants comprennent les caractéristiques de la science quantique. Ils en maitrisent le formalisme et l'appliquent dans les systèmes de base: puits, fils et boites quantiques, qubits.
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state together with the quantum mechanical rules for the system's evolution in time exhausts all that can be known about a quantum system. Quantum states may be defined in different ways for different kinds of systems or problems.
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates.
In quantum mechanics, a two-state system (also known as a two-level system) is a quantum system that can exist in any quantum superposition of two independent (physically distinguishable) quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit. Two-state systems are the simplest quantum systems that are of interest, since the dynamics of a one-state system is trivial (as there are no other states the system can exist in).
This paper is devoted to the study of multigraded algebras and multigraded linear series. For an NsNs-graded algebra AA, we define and study its volume function FA:N+s -> RFA:N+s→R, which computes the ...
Quantum many-body dynamics generically result in increasing entanglement that eventually leads to thermalization of local observables. This makes the exact description of the dynamics complex despite the apparent simplicity of (high-temperature) thermal st ...
SCIPOST FOUNDATION2022
,
Quantum computing could potentially offer faster solutions for some of today's classically intractable problems using quantum processors as computational support for quantum algorithms [1]. Quantum processors, in the most frequent embodiment, comprise an a ...