Résumé
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch. Quantum mechanics is mathematically formulated in Hilbert space or projective Hilbert space. The pure states of a quantum system correspond to the one-dimensional subspaces of the corresponding Hilbert space (and the "points" of the projective Hilbert space). For a two-dimensional Hilbert space, the space of all such states is the complex projective line This is the Bloch sphere, which can be mapped to the Riemann sphere. The Bloch sphere is a unit 2-sphere, with antipodal points corresponding to a pair of mutually orthogonal state vectors. The north and south poles of the Bloch sphere are typically chosen to correspond to the standard basis vectors and , respectively, which in turn might correspond e.g. to the spin-up and spin-down states of an electron. This choice is arbitrary, however. The points on the surface of the sphere correspond to the pure states of the system, whereas the interior points correspond to the mixed states. The Bloch sphere may be generalized to an n-level quantum system, but then the visualization is less useful. For historical reasons, in optics the Bloch sphere is also known as the Poincaré sphere and specifically represents different types of polarizations. Six common polarization types exist and are called Jones vectors. Indeed Henri Poincaré was the first to suggest the use of this kind of geometrical representation at the end of 19th century, as a three-dimensional representation of Stokes parameters. The natural metric on the Bloch sphere is the Fubini–Study metric. The mapping from the unit 3-sphere in the two-dimensional state space to the Bloch sphere is the Hopf fibration, with each ray of spinors mapping to one point on the Bloch sphere. Given an orthonormal basis, any pure state of a two-level quantum system can be written as a superposition of the basis vectors and , where the coefficient of (or contribution from) each of the two basis vectors is a complex number.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.