In control theory, a process variable (PV; also process value or process parameter) is the current measured value of a particular part of a process which is being monitored or controlled. An example of this would be the temperature of a furnace. The current temperature is the process variable, while the desired temperature is known as the set-point (SP).
Measurement of process variables is essential in control systems to controlling a process. The value of the process variable is continuously monitored so that control may be exerted.
Four commonly measured variables that affect chemical and physical processes are: pressure, temperature, level and flow. but there are in fact a large number of measurement quantities which for international purposes use the International System of Units (SI)
The SP-PV error is used to exert control on a process so that the value of PV equals the value of the SP. A classic use of this is in the
PID controller.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Provide the students with basic notions and tools for the modeling and analysis of dynamic systems. Show them how to design controllers and analyze the performance of controlled systems.
Cours introductif à la commande des systèmes dynamiques. On part de quatre exemples concrets et on introduit au fur et à mesure un haut niveau d'abstraction permettant de résoudre de manière unifiée l
In cybernetics and control theory, a setpoint (SP; also set point) is the desired or target value for an essential variable, or process value (PV) of a control system, which may differ from the actual measured value of the variable. Departure of such a variable from its setpoint is one basis for error-controlled regulation using negative feedback for automatic control. Cruise control The SP-PV error can be used to return a system to its norm.
A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial control systems which are used for controlling processes or machines. The control systems are designed via control engineering process. For continuously modulated control, a feedback controller is used to automatically control a process or operation.
Control theory is a field of control engineering and applied mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any delay, overshoot, or steady-state error and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required.
The advent of digital concrete fabrication calls for advancing our understanding of the interaction of 3D printing with material rheology and print parameters, in addition to developing new measurement and control techniques. Thixotropy is the main challen ...
Cyber-physical systems (CPSs) are real-world processes that are controlled by computer algorithms. We consider CPSs where a centralized, software-based controller maintains the process in a desired state by exchanging measurements and setpoints with proces ...
Convection in a layer inclined against gravity is a thermally driven non-equilibrium system, in which both buoyancy and shear forces drive spatio-temporally complex flows. As a function of the strength of thermal driving and the angle of inclination, a mul ...