**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Neumann boundary condition

Summary

In mathematics, the Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl Neumann.
When imposed on an ordinary or a partial differential equation, the condition specifies the values of the derivative applied at the boundary of the domain.
It is possible to describe the problem using other boundary conditions: a Dirichlet boundary condition specifies the values of the solution itself (as opposed to its derivative) on the boundary, whereas the Cauchy boundary condition, mixed boundary condition and Robin boundary condition are all different types of combinations of the Neumann and Dirichlet boundary conditions.
For an ordinary differential equation, for instance,
the Neumann boundary conditions on the interval [a,b] take the form
where α and β are given numbers.
For a partial differential equation, for instance,
where ∇2 denotes the Laplace operator, the Neumann boundary conditions on a domain Ω ⊂ Rn take the form
where n denotes the (typically exterior) normal to the boundary ∂Ω, and f is a given scalar function.
The normal derivative, which shows up on the left side, is defined as
where ∇y(x) represents the gradient vector of y(x), n̂ is the unit normal, and ⋅ represents the inner product operator.
It becomes clear that the boundary must be sufficiently smooth such that the normal derivative can exist, since, for example, at corner points on the boundary the normal vector is not well defined.
The following applications involve the use of Neumann boundary conditions:
In thermodynamics, a prescribed heat flux from a surface would serve as boundary condition. For example, a perfect insulator would have no flux while an electrical component may be dissipating at a known power.
In magnetostatics, the magnetic field intensity can be prescribed as a boundary condition in order to find the magnetic flux density distribution in a magnet array in space, for example in a permanent magnet motor. Since the problems in magnetostatics involve solving Laplace's equation or Poisson's equation for the magnetic scalar potential, the boundary condition is a Neumann condition.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (31)

Related MOOCs (10)

Related people (59)

Related concepts (12)

Related publications (452)

Related units (3)

Related lectures (408)

ChE-403: Heterogeneous reaction engineering

The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m

CS-411: Digital education

This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud

MSE-371: Practice of finite elements

Le but de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

, , , , , , , , ,

In mathematics, the Robin boundary condition (ˈrɒbɪn; properly ʁɔbɛ̃), or third type boundary condition, is a type of boundary condition, named after Victor Gustave Robin (1855–1897). When imposed on an ordinary or a partial differential equation, it is a specification of a linear combination of the values of a function and the values of its derivative on the boundary of the domain. Other equivalent names in use are Fourier-type condition and radiation condition.

In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions. Boundary value problems arise in several branches of physics as any physical differential equation will have them. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems.

In mathematics, a mixed boundary condition for a partial differential equation defines a boundary value problem in which the solution of the given equation is required to satisfy different boundary conditions on disjoint parts of the boundary of the domain where the condition is stated. Precisely, in a mixed boundary value problem, the solution is required to satisfy a Dirichlet or a Neumann boundary condition in a mutually exclusive way on disjoint parts of the boundary.

Maxwell's Equations in Vacuum

Explores Maxwell's equations in vacuum, photon scanning near-field optical microscope, light confinement, and experimental proof of light effects.

Material and Energy Balances

Explores material and energy balances in chemical engineering for process optimization and design.

Stability and Convergence in Numerical Methods

Explores stability, consistency, and convergence in numerical methods, emphasizing the importance of order consistency and boundary conditions.

We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...

Annalisa Buffa, Pablo Antolin Sanchez, Giuliano Guarino

This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the C 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackag ...

We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key fea ...