A lightning arrester (alternative spelling lightning arrestor) (also called lightning isolator) is a device, essentially an air gap between an electric wire and ground, used on electric power transmission and telecommunication systems to protect the insulation and conductors of the system from the damaging effects of lightning. The typical lightning arrester has a high-voltage terminal and a ground terminal. When a lightning surge (or switching surge, which is very similar) travels along the power line to the arrester, the current from the surge is diverted through the arrester, in most cases to earth.
In telegraphy and telephony, a lightning arrester is placed where wires enter a structure, preventing damage to electronic instruments within and ensuring the safety of individuals near them. Smaller versions of lightning arresters, also called surge arresters, are devices that are connected between each conductor in power and communications systems and the earth. These prevent the flow of the normal power or signal currents to ground, but provide a path over which high-voltage lightning current flows, bypassing the connected equipment. Their purpose is to limit the rise in voltage when a communications or power line is struck by lightning or is near to a lightning strike.
If protection fails or is absent, lightning that strikes the electrical system introduces thousands of kilovolts that may damage the transmission lines, and can also cause severe damage to transformers and other electrical or electronic devices. Lightning-produced extreme voltage spikes in incoming power lines can damage electrical home appliances or even cause death.
Lightning arresters are used to protect electric fences. They consist of a spark gap and sometimes a series inductor. Such type of equipment is also used for protecting transmitters feeding a mast radiator. For such devices the series inductance has usually just one winding.
Lightning arresters can form part of large electrical transformers and can fragment during transformer ruptures.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
After a series of common introductory topics covering an introduction to electromagnetic compatibility, modeling techniques and selected chapters from EMC, each student will study a specific topic, wh
An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. Electronic components have a number of electrical terminals or leads.
A varistor (a.k.a. voltage-dependent resistor (VDR)) is a surge protecting electronic component with an electrical resistance that varies with the applied voltage. It has a nonlinear, non-ohmic current–voltage characteristic that is similar to that of a diode. Unlike a diode however, it has the same characteristic for both directions of traversing current. Traditionally, varistors were indeed constructed by connecting two rectifiers, such as the copper-oxide or germanium-oxide rectifier in antiparallel configuration.
A lightning rod or lightning conductor (British English) is a metal rod mounted on a structure and intended to protect the structure from a lightning strike. If lightning hits the structure, it will preferentially strike the rod and be conducted to ground through a wire, instead of passing through the structure, where it could start a fire or cause electrocution. Lightning rods are also called finials, air terminals, or strike termination devices. In a lightning protection system, a lightning rod is a single component of the system.
In this chapter, we present a review of recent progress in the modeling of lightning strikes to tall structures. Since some tall structures are struck by lightning several tens of times per year, they can be used as ground-truth to measure and calibrate th ...
This paper proposes a tower-foot grounding system model compatible with EMT programs which might be useful for the simulation of lightning transients in overhead lines. The proposed model is based on the solution of the telegrapher's equations and the appl ...
The lightning discharge current is characterized by a high-frequency spectrum extending from DC to about 10 MHz. The calculation of the grounding impedance is one of the most important aspects of designing lightning protection systems. The search for analy ...