Interpretation (logic)An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics. The most commonly studied formal logics are propositional logic, predicate logic and their modal analogs, and for these there are standard ways of presenting an interpretation.
Primitive notionIn mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory, relations between primitive notions are restricted by axioms. Some authors refer to the latter as "defining" primitive notions by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress (per the regress problem).
Distributive propertyIn mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields.
Free variables and bound variablesIn mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a variable may be said to be either free or bound. The terms are opposites. A free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively.
Predicate (mathematical logic)In logic, a predicate is a symbol that represents a property or a relation. For instance, in the first-order formula , the symbol is a predicate that applies to the individual constant . Similarly, in the formula , the symbol is a predicate that applies to the individual constants and . In the semantics of logic, predicates are interpreted as relations. For instance, in a standard semantics for first-order logic, the formula would be true on an interpretation if the entities denoted by and stand in the relation denoted by .
Logical constantIn logic, a logical constant or constant symbol of a language is a symbol that has the same semantic value under every interpretation of . Two important types of logical constants are logical connectives and quantifiers. The equality predicate (usually written '=') is also treated as a logical constant in many systems of logic.
Image (mathematics)In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function at each element of a given subset of its domain produces a set, called the "image of under (or through) ". Similarly, the inverse image (or preimage) of a given subset of the codomain of is the set of all elements of the domain that map to the members of Image and inverse image may also be defined for general binary relations, not just functions. The word "image" is used in three related ways.
Predicate variableIn mathematical logic, a predicate variable is a predicate letter which functions as a "placeholder" for a relation (between terms), but which has not been specifically assigned any particular relation (or meaning). Common symbols for denoting predicate variables include capital roman letters such as , and , or lower case roman letters, e.g., . In first-order logic, they can be more properly called metalinguistic variables.
Domain of discourseIn the formal sciences, the domain of discourse, also called the universe of discourse, universal set, or simply universe, is the set of entities over which certain variables of interest in some formal treatment may range. The domain of discourse is usually identified in the preliminaries, so that there is no need in the further treatment to specify each time the range of the relevant variables. Many logicians distinguish, sometimes only tacitly, between the domain of a science and the universe of discourse of a formalization of the science.
SatisfiabilityIn mathematical logic, a formula is satisfiable if it is true under some assignment of values to its variables. For example, the formula is satisfiable because it is true when and , while the formula is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is valid if every assignment of values to its variables makes the formula true. For example, is valid over the integers, but is not.