In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields. It is also encountered in Boolean algebra and mathematical logic, where each of the logical and (denoted ) and the logical or (denoted ) distributes over the other. Given a set and two binary operators and on the operation is over (or with respect to) if, given any elements of the operation is over if, given any elements of and the operation is over if it is left- and right-distributive. When is commutative, the three conditions above are logically equivalent. The operators used for examples in this section are those of the usual addition and multiplication If the operation denoted is not commutative, there is a distinction between left-distributivity and right-distributivity: In either case, the distributive property can be described in words as: To multiply a sum (or difference) by a factor, each summand (or minuend and subtrahend) is multiplied by this factor and the resulting products are added (or subtracted). If the operation outside the parentheses (in this case, the multiplication) is commutative, then left-distributivity implies right-distributivity and vice versa, and one talks simply of . One example of an operation that is "only" right-distributive is division, which is not commutative: In this case, left-distributivity does not apply: The distributive laws are among the axioms for rings (like the ring of integers) and fields (like the field of rational numbers). Here multiplication is distributive over addition, but addition is not distributive over multiplication.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Real number
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Boolean ring
In mathematics, a Boolean ring R is a ring for which x2 = x for all x in R, that is, a ring that consists only of idempotent elements. An example is the ring of integers modulo 2. Every Boolean ring gives rise to a Boolean algebra, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨, which would constitute a semiring). Conversely, every Boolean algebra gives rise to a Boolean ring.
Commutative property
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, "3 − 5 ≠ 5 − 3"); such operations are not commutative, and so are referred to as noncommutative operations.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.