Concept

Polynomial remainder theorem

In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is the remainder of the Euclidean division of by and is a divisor of if and only if a property known as the factor theorem. Let . Polynomial division of by gives the quotient and the remainder . Therefore, . Proof that the polynomial remainder theorem holds for an arbitrary second degree polynomial by using algebraic manipulation: So, which is exactly the formula of Euclidean division. The generalization of this proof to any degree is given below in . The polynomial remainder theorem follows from the theorem of Euclidean division, which, given two polynomials f(x) (the dividend) and g(x) (the divisor), asserts the existence (and the uniqueness) of a quotient Q(x) and a remainder R(x) such that If the divisor is where r is a constant, then either R(x) = 0 or its degree is zero; in both cases, R(x) is a constant that is independent of x; that is Setting in this formula, we obtain: A constructive proofthat does not involve the existence theorem of Euclidean divisionuses the identity If denotes the factor of degree in this identity, and one has (since ). Adding to both sides of this equation, one gets simultaneously the polynomial remainder theorem and the existence part, in this case, of the theorem of Euclidean division. The polynomial remainder theorem may be used to evaluate by calculating the remainder, . Although polynomial long division is more difficult than evaluating the function itself, synthetic division is computationally easier. Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem. The factor theorem is another application of the remainder theorem: if the remainder is zero, then the linear divisor is a factor.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.