Total synthesis is the complete chemical synthesis of a complex molecule, often a natural product, from simple, commercially-available precursors. It usually refers to a process not involving the aid of biological processes, which distinguishes it from semisynthesis. Syntheses may sometimes conclude at a precursor with further known synthetic pathways to a target molecule, in which case it is known as a formal synthesis. Total synthesis target molecules can be natural products, medicinally-important active ingredients, known intermediates, or molecules of theoretical interest. Total synthesis targets can also be organometallic or inorganic, though these are rarely encountered. Total synthesis projects often require a wide diversity of reactions and reagents, and subsequently requires broad chemical knowledge and training to be successful.
Often, the aim is to discover a new route of synthesis for a target molecule for which there already exist known routes. Sometimes, however, no route exists, and chemists wish to find a viable route for the first time. Total synthesis is particularly important for the discovery of new chemical reactions and new chemical reagents, as well as establishing synthetic routes for medicinally important compounds.
There are numerous classes of natural products for which total synthesis is applied to. These include (but are not limited to): terpenes, alkaloids, polyketides and polyethers. Total synthesis targets are sometimes referred to by their organismal origin such as plant, marine, and fungal. The term total synthesis is less frequently but still accurately applied to the synthesis of natural polypeptides and polynucleotides. The peptide hormones oxytocin and vasopressin were isolated and their total syntheses first reported in 1954. It is not uncommon for natural product targets to feature multiple structural components of several natural product classes.
Although untrue from a historical perspective (see the history of the steroid, cortisone), total synthesis in the modern age has largely been an academic endeavor (in terms of manpower applied to problems).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Present and discuss important recent contributions in the field of inorganic chemistry. This will be achieved by student literature seminars based on selected publications,emanating from the last 12 m
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical synthesis (both semisynthesis and total synthesis) and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets.
Semisynthesis, or partial chemical synthesis, is a type of chemical synthesis that uses chemical compounds isolated from natural sources (such as microbial cell cultures or plant material) as the starting materials to produce novel compounds with distinct chemical and medicinal properties. The novel compounds generally have a high molecular weight or a complex molecular structure, more so than those produced by total synthesis from simple starting materials.
Organic synthesis is a special branch of chemical synthesis and is concerned with the intentional construction of organic compounds. Organic molecules are often more complex than inorganic compounds, and their synthesis has developed into one of the most important branches of organic chemistry. There are several main areas of research within the general area of organic synthesis: total synthesis, semisynthesis, and methodology.
Macrocycles provide an attractive modality for drug development but the identification of ligands to targets of interest is hindered by the lack of large macrocyclic compound libraries for high-throughput screening. A strategy to efficiently synthesize lar ...
An organic dye photocatalyzed lactonization-alkynylation of easily accessible homoallylic cesium oxalates using ethynylbenziodoxolone (EBX) reagents has been developed. The reaction gave access to valuable functionalized lactones and lactams in up to 88% y ...
Amer Chemical Soc2024
,
Emulsions are omnipresent in our everyday life; for example, in food, certain drug and cosmetic formulations, agriculture, and as paints. Moreover, they are frequently used to perform high-throughput screening assays with minimum sample volumes. Key to the ...