In mathematics, particularly in operator theory and C*-algebra theory, a continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.
Theorem. Let x be a normal element of a C*-algebra A with an identity element e. Let C be the C*-algebra of the bounded continuous functions on the spectrum σ(x) of x. Then there exists a unique mapping π : C → A, where π(f) is denoted f(x), such that π is a unit-preserving morphism of C*-algebras and π(1) = e and π(id) = x, where id denotes the function z → z on σ(x).
In particular, this theorem implies that bounded normal operators on a Hilbert space have a continuous functional calculus.
Its proof is almost immediate from the Gelfand representation: it suffices to assume A is the C*-algebra of continuous functions on some compact space X and define
Uniqueness follows from application of the Stone–Weierstrass theorem.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Quantum mechanics is one of the most successful physical theories. This course presents the mathematical formalism (functional analysis and spectral theory) that underlies quantum mechanics. It is sim
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments.
In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its hermitian adjoint N*, that is: NN* = NN. Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N = N−1 Hermitian operators (i.e., self-adjoint operators): N* = N Skew-Hermitian operators: N* = −N positive operators: N = MM* for some M (so N is self-adjoint).
Let 1 < p < infinity, let G and H be locally compact groups and let c) be a continuous homomorphism of G into H. We prove, if G is amenable, the existence of a linear contraction of the Banach algebra CVp (G) of the p-convolution operators on G into CVp (H ...
We introduce a new numerical method for the time-dependent Maxwell equations on unstructured meshes in two space dimensions. This relies on the introduction of a new mesh, which is the barycentric-dual cellular complex of the starting simplicial mesh, and ...
In this thesis the Cauchy problem and in particular the question of singularity formation for co--rotational wave maps from 3+1 Minkowski space to the three--sphere S3 is studied. Numerics indicate that self--similar solutions of this model play a cruci ...