Concept

Continuous functional calculus

Résumé
In mathematics, particularly in operator theory and C*-algebra theory, a continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra. Theorem. Let x be a normal element of a C*-algebra A with an identity element e. Let C be the C*-algebra of the bounded continuous functions on the spectrum σ(x) of x. Then there exists a unique mapping π : C → A, where π(f) is denoted f(x), such that π is a unit-preserving morphism of C*-algebras and π(1) = e and π(id) = x, where id denotes the function z → z on σ(x). In particular, this theorem implies that bounded normal operators on a Hilbert space have a continuous functional calculus. Its proof is almost immediate from the Gelfand representation: it suffices to assume A is the C*-algebra of continuous functions on some compact space X and define Uniqueness follows from application of the Stone–Weierstrass theorem.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.