In statistics, missing data, or missing values, occur when no data value is stored for the variable in an observation. Missing data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data.
Missing data can occur because of nonresponse: no information is provided for one or more items or for a whole unit ("subject"). Some items are more likely to generate a nonresponse than others: for example items about private subjects such as income. Attrition is a type of missingness that can occur in longitudinal studies—for instance studying development where a measurement is repeated after a certain period of time. Missingness occurs when participants drop out before the test ends and one or more measurements are missing.
Data often are missing in research in economics, sociology, and political science because governments or private entities choose not to, or fail to, report critical statistics, or because the information is not available. Sometimes missing values are caused by the researcher—for example, when data collection is done improperly or mistakes are made in data entry.
These forms of missingness take different types, with different impacts on the validity of conclusions from research: Missing completely at random, missing at random, and missing not at random. Missing data can be handled similarly as censored data.
Understanding the reasons why data are missing is important for handling the remaining data correctly. If values are missing completely at random, the data sample is likely still representative of the population. But if the values are missing systematically, analysis may be biased. For example, in a study of the relation between IQ and income, if participants with an above-average IQ tend to skip the question ‘What is your salary?’, analyses that do not take into account this missing at random (MAR pattern (see below)) may falsely fail to find a positive association between IQ and salary.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Computer environments such as educational games, interactive simulations, and web services provide large amounts of data, which can be analyzed and serve as a basis for adaptation. This course will co
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
The "Introduction to Applied Data Science" (I2ADS) course is aimed at students of all levels to train them in the core computer science software stack and techniques forming the pillars of open & repr
In statistics, censoring is a condition in which the value of a measurement or observation is only partially known. For example, suppose a study is conducted to measure the impact of a drug on mortality rate. In such a study, it may be known that an individual's age at death is at least 75 years (but may be more). Such a situation could occur if the individual withdrew from the study at age 75, or if the individual is currently alive at the age of 75. Censoring also occurs when a value occurs outside the range of a measuring instrument.
In statistics, imputation is the process of replacing missing data with substituted values. When substituting for a data point, it is known as "unit imputation"; when substituting for a component of a data point, it is known as "item imputation". There are three main problems that missing data causes: missing data can introduce a substantial amount of bias, make the handling and analysis of the data more arduous, and create reductions in efficiency.
In common usage and statistics, data (USˈdætə; UKˈdeɪtə) is a collection of discrete or continuous values that convey information, describing the quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted formally. A datum is an individual value in a collection of data. Data is usually organized into structures such as tables that provide additional context and meaning, and which may themselves be used as data in larger structures.
This study compares three imputation methods applied to the field observations of hydraulic head in subsurface hydrology. Hydrogeological studies that analyze the timeseries of groundwater elevations often face issues with missing data that may mislead bot ...
MDPI2023
, ,
The associated peer reviewed article that will appear in the International Journal of STEM education : El-Hamamsy, L., Bruno, B., Audrin, C., Chevalier, M., Avry S., Dehler Zufferey, J., and Mondada, F. (2023). How are Primary School Computer Science Curri ...
EPFL Infoscience2023
, ,
Corresponding article : El-Hamamsy, L.*, Monnier, E.-C. *, Chessel-Lazzarotto F., Liégeois G., Bruno, B., Dehler Zufferey, J., and Mondada, F. (2023). An Adapted Cascade Model to Scale Primary School Digital Education Curricular Reforms and Teacher Profess ...