Concept

Rank (differential topology)

In mathematics, the rank of a differentiable map between differentiable manifolds at a point is the rank of the derivative of at . Recall that the derivative of at is a linear map from the tangent space at p to the tangent space at f(p). As a linear map between vector spaces it has a well-defined rank, which is just the dimension of the in Tf(p)N: A differentiable map f : M → N is said to have constant rank if the rank of f is the same for all p in M. Constant rank maps have a number of nice properties and are an important concept in differential topology. Three special cases of constant rank maps occur. A constant rank map f : M → N is an immersion if rank f = dim M (i.e. the derivative is everywhere injective), a submersion if rank f = dim N (i.e. the derivative is everywhere surjective), a local diffeomorphism if rank f = dim M = dim N (i.e. the derivative is everywhere bijective). The map f itself need not be injective, surjective, or bijective for these conditions to hold, only the behavior of the derivative is important. For example, there are injective maps which are not immersions and immersions which are not injections. However, if f : M → N is a smooth map of constant rank then if f is injective it is an immersion, if f is surjective it is a submersion, if f is bijective it is a diffeomorphism. Constant rank maps have a nice description in terms of local coordinates. Suppose M and N are smooth manifolds of dimensions m and n respectively, and f : M → N is a smooth map with constant rank k. Then for all p in M there exist coordinates (x1, ..., xm) centered at p and coordinates (y1, ..., yn) centered at f(p) such that f is given by in these coordinates. Maps whose rank is generically maximal, but drops at certain singular points, occur frequently in coordinate systems. For example, in spherical coordinates, the rank of the map from the two angles to a point on the sphere (formally, a map T2 → S2 from the torus to the sphere) is 2 at regular points, but is only 1 at the north and south poles (zenith and nadir).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.