The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen fusion (via the CNO cycle) in a shell surrounding the core. The onset of core helium fusion at the tip of the red-giant branch causes substantial changes in stellar structure, resulting in an overall reduction in luminosity, some contraction of the stellar envelope, and the surface reaching higher temperatures.
Horizontal branch stars were discovered with the first deep photographic photometric studies of globular clusters
and were notable for being absent from all open clusters that had been studied up to that time. The horizontal branch is so named because in low-metallicity star collections like globular clusters, HB stars lie along a roughly horizontal line in a Hertzsprung–Russell diagram. Because the stars of one globular cluster are all at essentially the same distance from us, their apparent magnitudes all have the same relationship to their absolute magnitudes, and thus absolute-magnitude-related properties are plainly visible on an H-R diagram confined to stars of that cluster, undiffused by distance and thence magnitude uncertainties.
After exhausting their core hydrogen, stars leave the main sequence and begin fusion in a hydrogen shell around the helium core and become giants on the red-giant branch. In stars with masses up to 2.3 times the mass of the Sun the helium core becomes a region of degenerate matter that does not contribute to the generation of energy. It continues to grow and increase in temperature as the hydrogen fusion in the shell contributes more helium.
If the star has more than about 0.5 solar masses, the core eventually reaches the temperature necessary for the fusion of helium into carbon through the triple-alpha process. The initiation of helium fusion begins across the core region, which will cause an immediate temperature rise and a rapid increase in the rate of fusion.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up
prototypes to Spark clusters. It exposes the students to the entire data science pipe
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.
A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it.
Eta Carinae (η Carinae, abbreviated to η Car), formerly known as Eta Argus, is a stellar system containing at least two stars with a combined luminosity greater than five million times that of the Sun, located around distant in the constellation Carina. Previously a 4th-magnitude star, it brightened in 1837 to become brighter than Rigel, marking the start of its so-called "Great Eruption". It became the second-brightest star in the sky between 11 and 14 March 1843 before fading well below naked-eye visibility after 1856.
Discusses optimizing projectile trajectory through mathematical functions and key variables.
Introduces the basics of Version Control Systems, focusing on Git operations and branching strategies.
Explores the fundamental problem of distance in astronomy and discusses various methods for distance measurement, including wide-angle astrometry and detached eclipsing binary distances.
The tip of the red giant branch (TRGB) is an important standard candle for determining luminosity distances. Although several 105 small-amplitude red giant stars (SARGs) have been discovered, variability was previously considered irrelevant for the TRGB as ...
Bristol2024
Stellar candidates in the Ursa Minor (UMi) dwarf galaxy have been found using a new Bayesian algorithm applied to Gaia EDR3 data. Five of these targets are located in the extreme outskirts of UMi, from similar to 5 to 12 elliptical half-light radii (r h), ...
The tip of the red giant branch provides a luminous standard candle for calibrating distance ladders that reach Type Ia supernova (SN Ia) hosts. However, recent work reveals that tip measurements vary at the similar to 0.1 mag level for different stellar p ...