Concept

Clifford torus

Summary
In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles S_1 and S_1 (in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if S_1 and S_1 each exists in its own independent embedding space R_2 and R_2, the resulting product space will be R4 rather than R3. The historically popular view that the Cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis z available to it after the first circle consumes x and y. Stated another way, a torus embedded in R3 is an asymmetric reduced-dimension projection of the maximally symmetric Clifford torus embedded in R4. The relationship is similar to that of projecting the edges of a cube onto a sheet of paper. Such a projection creates a lower-dimensional image that accurately captures the connectivity of the cube edges, but also requires the arbitrary selection and removal of one of the three fully symmetric and interchangeable axes of the cube. If S_1 and S_1 each has a radius of , their Clifford torus product will fit perfectly within the unit 3-sphere S3, which is a 3-dimensional submanifold of R4. When mathematically convenient, the Clifford torus can be viewed as residing inside the complex coordinate space C2, since C2 is topologically equivalent to R4. The Clifford torus is an example of a square torus, because it is isometric to a square with opposite sides identified. It is further known as a Euclidean 2-torus (the "2" is its topological dimension); figures drawn on it obey Euclidean geometry as if it were flat, whereas the surface of a common "doughnut"-shaped torus is positively curved on the outer rim and negatively curved on the inner.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.