Background selection describes the loss of genetic diversity at a non-deleterious locus due to negative selection against linked deleterious alleles. It is one form of linked selection, where the maintenance or removal of an allele from a population is dependent upon the alleles in its linkage group. The name emphasizes the fact that the genetic background, or genomic environment, of a neutral mutation has a significant impact on whether it will be preserved (genetic hitchhiking) or purged (background selection) from a population. In some cases, the term background selection is used broadly to refer to all forms of linked selection, but most often it is used only when neutral variation is reduced due to negative selection against deleterious mutations. Background selection and all forms of linked selection contradict the assumption of the neutral theory of molecular evolution that the fixation or loss of neutral alleles is entirely stochastic, the result of genetic drift. Instead, these models predict that neutral variation is correlated with the selective pressures acting on linked non-neutral genes, that neutral traits are not necessarily oblivious to selection. Because they segregate together, non-neutral mutations linked to neutral polymorphisms result in decreased levels of genetic variation relative to predictions of neutral evolution. The reduction in neutral variation due to background selection can be modeled by an exponential function of the total mutation rate at the deleterious regions of the section of genome involved. The overall effect of background selection on genetic diversity resembles a reduction in effective population size. As a consequence, background selection has been used to explain many of the inconsistencies between classical models of neutral variation and observed studies of genetic diversity. For instance, the observation that genetic diversity is weakly correlated with population size, or not correlated at all, is called the "paradox of variation".

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Natural Selection and Evolution
Explores natural selection, genetic variation, and evolutionary changes within populations, using examples like sickle cell anemia and flu virus evolution.
Neuroscience and ML
Explores the intersection between neuroscience and machine learning, discussing deep learning, reinforcement learning, memory systems, and the future of bridging machine and human-level intelligence.
Related publications (39)

Euclid preparation XXXVII. Galaxy colour selections with Euclid and ground photometry for cluster weak-lensing analyses

Frédéric Courbin, Georges Meylan, Gianluca Castignani, Maurizio Martinelli, Matthias Wiesmann, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina

Aims. We derived galaxy colour selections from Euclid and ground-based photometry, aiming to accurately define background galaxy samples in cluster weak-lensing analyses. These selections have been implemented in the Euclid data analysis pipelines for gala ...
Edp Sciences S A2024

Frequent asymmetric migrations suppress natural selection in spatially structured populations

Anne-Florence Raphaëlle Bitbol, Alia Abbara

Natural microbial populations often have complex spatial structures. This can impact their evolution, in particular the ability of mutants to take over. While mutant fixation probabilities are known to be unaffected by sufficiently symmetric structures, ev ...
Oxford2023

Hydrodynamic flow and concentration gradients in the gut enhance neutral bacterial diversity

Anne-Florence Raphaëlle Bitbol

The gut microbiota features important genetic diversity, and the specific spatial features of the gut may shape evolution within this environment. We investigate the fixation probability of neutral bacterial mutants within a minimal model of the gut that i ...
National Academy of Sciences2022
Show more
Related units (1)
Related concepts (10)
Coalescent theory
Coalescent theory is a model of how alleles sampled from a population may have originated from a common ancestor. In the simplest case, coalescent theory assumes no recombination, no natural selection, and no gene flow or population structure, meaning that each variant is equally likely to have been passed from one generation to the next. The model looks backward in time, merging alleles into a single ancestral copy according to a random process in coalescence events.
Neutral mutation
Neutral mutations are changes in DNA sequence that are neither beneficial nor detrimental to the ability of an organism to survive and reproduce. In population genetics, mutations in which natural selection does not affect the spread of the mutation in a species are termed neutral mutations. Neutral mutations that are inheritable and not linked to any genes under selection will be lost or will replace all other alleles of the gene. That loss or fixation of the gene proceeds based on random sampling known as genetic drift.
Negative selection (natural selection)
In natural selection, negative selection or purifying selection is the selective removal of alleles that are deleterious. This can result in stabilising selection through the purging of deleterious genetic polymorphisms that arise through random mutations. Purging of deleterious alleles can be achieved on the population genetics level, with as little as a single point mutation being the unit of selection. In such a case, carriers of the harmful point mutation have fewer offspring each generation, reducing the frequency of the mutation in the gene pool.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.