Sunzi SuanjingSunzi Suanjing () was a mathematical treatise written during 3rd to 5th centuries AD which was listed as one of the Ten Computational Canons during the Tang dynasty. The specific identity of its author Sunzi (lit. "Master Sun") is still unknown but he lived much later than his namesake Sun Tzu, author of The Art of War. From the textual evidence in the book, some scholars concluded that the work was completed during the Southern and Northern Dynasties.
Multiple (mathematics)In mathematics, a multiple is the product of any quantity and an integer. In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that is an integer. When a and b are both integers, and b is a multiple of a, then a is called a divisor of b. One says also that a divides b. If a and b are not integers, mathematicians prefer generally to use integer multiple instead of multiple, for clarification.
AlgorismAlgorism is the technique of performing basic arithmetic by writing numbers in place value form and applying a set of memorized rules and facts to the digits. One who practices algorism is known as an algorist. This positional notation system has largely superseded earlier calculation systems that used a different set of symbols for each numerical magnitude, such as Roman numerals, and in some cases required a device such as an abacus. The word algorism comes from the name Al-Khwārizmī (c.
Multiplication tableIn mathematics, a multiplication table (sometimes, less formally, a times table) is a mathematical table used to define a multiplication operation for an algebraic system. The decimal multiplication table was traditionally taught as an essential part of elementary arithmetic around the world, as it lays the foundation for arithmetic operations with base-ten numbers. Many educators believe it is necessary to memorize the table up to 9 × 9. The oldest known multiplication tables were used by the Babylonians about 4000 years ago.
Completeness of the real numbersCompleteness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number.
Unary numeral systemThe unary numeral system is the simplest numeral system to represent natural numbers: to represent a number N, a symbol representing 1 is repeated N times. In the unary system, the number 0 (zero) is represented by the empty string, that is, the absence of a symbol. Numbers 1, 2, 3, 4, 5, 6, ... are represented in unary as 1, 11, 111, 1111, 11111, 111111, ... Unary is a bijective numeral system.