Active rectificationActive rectification, or synchronous rectification, is a technique for improving the efficiency of rectification by replacing diodes with actively controlled switches, usually power MOSFETs or power bipolar junction transistors (BJT). Whereas normal semiconductor diodes have a roughly fixed voltage drop of around 0.5-1 volts, active rectifiers behave as resistances, and can have arbitrarily low voltage drop. Historically, vibrator driven switches or motor-driven commutators have also been used for mechanical rectifiers and synchronous rectification.
H-bridgeAn H-bridge is an electronic circuit that switches the polarity of a voltage applied to a load. These circuits are often used in robotics and other applications to allow DC motors to run forwards or backwards. The name is derived from its common schematic diagram representation, with four switching elements configured as the branches of a letter "H" and the load connected as the cross-bar. Most DC-to-AC converters (power inverters), most AC/AC converters, the DC-to-DC push–pull converter, isolated DC-to-DC converter most motor controllers, and many other kinds of power electronics use H bridges.
PIN diodeA PIN diode is a diode with a wide, undoped intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor region. The p-type and n-type regions are typically heavily doped because they are used for ohmic contacts. The wide intrinsic region is in contrast to an ordinary p–n diode. The wide intrinsic region makes the PIN diode an inferior rectifier (one typical function of a diode), but it makes it suitable for attenuators, fast switches, photodetectors, and high-voltage power electronics applications.
Power semiconductor deviceA power semiconductor device is a semiconductor device used as a switch or rectifier in power electronics (for example in a switch-mode power supply). Such a device is also called a power device or, when used in an integrated circuit, a power IC. A power semiconductor device is usually used in "commutation mode" (i.e., it is either on or off), and therefore has a design optimized for such usage; it should usually not be used in linear operation. Linear power circuits are widespread as voltage regulators, audio amplifiers, and radio frequency amplifiers.
Control gridThe control grid is an electrode used in amplifying thermionic valves (vacuum tubes) such as the triode, tetrode and pentode, used to control the flow of electrons from the cathode to the anode (plate) electrode. The control grid usually consists of a cylindrical screen or helix of fine wire surrounding the cathode, and is surrounded in turn by the anode. The control grid was invented by Lee De Forest, who in 1906 added a grid to the Fleming valve (thermionic diode) to create the first amplifying vacuum tube, the Audion (triode).
Flyback diodeA flyback diode is any diode connected across an inductor used to eliminate flyback, which is the sudden voltage spike seen across an inductive load when its supply current is suddenly reduced or interrupted. It is used in circuits in which inductive loads are controlled by switches, and in switching power supplies and inverters. Flyback circuits have been used since 1930 and were refined starting in 1950 for use in television receivers.
VaristorA varistor (a.k.a. voltage-dependent resistor (VDR)) is a surge protecting electronic component with an electrical resistance that varies with the applied voltage. It has a nonlinear, non-ohmic current–voltage characteristic that is similar to that of a diode. Unlike a diode however, it has the same characteristic for both directions of traversing current. Traditionally, varistors were indeed constructed by connecting two rectifiers, such as the copper-oxide or germanium-oxide rectifier in antiparallel configuration.
Precision rectifierThe precision rectifier is a configuration obtained with an operational amplifier in order to have a circuit behave like an ideal diode and rectifier. It is very useful for high-precision signal processing. With the help of a precision rectifier the high-precision signal processing can be done very easily. The op-amp-based precision rectifier should not be confused with the power MOSFET-based active rectification ideal diode. The basic circuit implementing such a feature is shown on the right, where can be any load.
Diode modellingIn electronics, diode modelling refers to the mathematical models used to approximate the actual behaviour of real diodes to enable calculations and circuit analysis. A diode's I-V curve is nonlinear. A very accurate, but complicated, physical model composes the I-V curve from three exponentials with a slightly different steepness (i.e. ideality factor), which correspond to different recombination mechanisms in the device; at very large and very tiny currents the curve can be continued by linear segments (i.
Voltage multiplierA voltage multiplier is an electrical circuit that converts AC electrical power from a lower voltage to a higher DC voltage, typically using a network of capacitors and diodes. Voltage multipliers can be used to generate a few volts for electronic appliances, to millions of volts for purposes such as high-energy physics experiments and lightning safety testing. The most common type of voltage multiplier is the half-wave series multiplier, also called the Villard cascade (but actually invented by Heinrich Greinacher).