Concept# David Hilbert

Summary

David Hilbert (ˈhɪlbərt; ˈdaːvɪt ˈhɪlbɐt; 23 January 1862 – 14 February 1943) was a German mathematician and one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory).
Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century.
Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic.
Life

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

No results

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (3)

Loading

Loading

Loading

Related units

No results

Related concepts (116)

Mathematics

Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These top

Logic

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follo

Mathematical logic

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research i

Related courses (25)

MATH-302: Functional analysis I

Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes de l'application ouverte et du graphe fermé.

PHYS-454: Quantum optics and quantum information

This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cover some aspects of quantum information processing, quantum sensing and quantum simulation.

EE-512: Applied biomedical signal processing

The goal of this course is twofold: (1) to introduce physiological basis, signal acquisition solutions (sensors) and state-of-the-art signal processing techniques, and (2) to propose concrete examples of applications for vital sign monitoring and diagnosis purposes.

A weak metric on a set is a function that satisfies the axioms of a metric except the symmetry and the separation axioms. The aim of this paper is to present some interesting weak metrics and to study some of their properties. In particular, we introduce a weak metric, called the Apollonian weak metric, on any subset of a Euclidean space which is either bounded or whose boundary is unbounded. We relate this weak metric to some familiar metrics such as the Poincaré metric, the Klein-Hilbert metric, the Funk metric and the part metric which all play important roles in classical and in recent work on geometric function theory.

2007Seonghoon Choi, Julien Roulet, Jiri Vanicek

Exact nonadiabatic quantum evolution preserves many geometric properties of the molecular Hilbert space. In the first paper of this series ["Paper I," S. Choi and J. Vaníček, J. Chem. Phys. 150, 204112 (2019)], we presented numerical integrators of arbitrary-order of accuracy that preserve these geometric properties exactly even in the adiabatic representation, in which the molecular Hamiltonian is not separable into kinetic and potential terms. Here, we focus on the separable Hamiltonian in diabatic representation, where the split-operator algorithm provides a popular alternative because it is explicit and easy to implement, while preserving most geometric invariants. Whereas the standard version has only second-order accuracy, we implemented, in an automated fashion, its recursive symmetric compositions, using the same schemes as in Paper I, and obtained integrators of arbitrary even order that still preserve the geometric properties exactly. Because the automatically generated splitting coefficients are redundant, we reduce the computational cost by pruning these coefficients and lower memory requirements by identifying unique coefficients. The order of convergence and preservation of geometric properties are justified analytically and confirmed numerically on a one-dimensional two-surface model of NaI and a three-dimensional three-surface model of pyrazine. As for efficiency, we find that to reach a convergence error of 10^−10, a 600-fold speedup in the case of NaI and a 900-fold speedup in the case of pyrazine are obtained with the higher-order compositions instead of the second-order split-operator algorithm. The pyrazine results suggest that the efficiency gain survives in higher dimensions.

2019Related lectures (42)

David Hilbert discovered in 1895 an important metric that is canonically associated to any convex domain $\Omega$ in the Euclidean (or projective) space. This metric is known to be Finslerian, and the usual proof assumes a certain degree of smoothness of the boundary of $\Omega$ and refers to a theorem by Busemann and Mayer that produces the norm of a tangent vector from the distance function. In this paper, we develop a new approach for the study of the Hilbert metric where no differentiability is assumed. The approach exhibits the Hilbert metric on a domain as a symmetrization of a natural weak metric, known as the Funk metric. The Funk metric is described as a tautological weak Finsler metric, in which the unit ball at each tangent space is naturally identified with the domain $\Omega$ itself. The Hilbert metric is then identified with the reversible tautological weak Finsler structure on $\Omega$, and the unit ball at each point is described as the harmonic symmetrization of the unit ball of the Funk metric. Properties of the Hilbert metric then follow from general properties of harmonic symmetrizations of weak Finsler structures.

2009