Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.
Expected shortfall is also called conditional value at risk (CVaR), average value at risk (AVaR), expected tail loss (ETL), and superquantile.
ES estimates the risk of an investment in a conservative way, focusing on the less profitable outcomes. For high values of it ignores the most profitable but unlikely possibilities, while for small values of it focuses on the worst losses. On the other hand, unlike the discounted maximum loss, even for lower values of the expected shortfall does not consider only the single most catastrophic outcome. A value of often used in practice is 5%.
Expected shortfall is considered a more useful risk measure than VaR because it is a coherent spectral measure of financial portfolio risk. It is calculated for a given quantile-level and is defined to be the mean loss of portfolio value given that a loss is occurring at or below the -quantile.
If (an Lp) is the payoff of a portfolio at some future time and then we define the expected shortfall as
where is the value at risk. This can be equivalently written as
where is the lower -quantile and is the indicator function. The dual representation is
where is the set of probability measures which are absolutely continuous to the physical measure such that almost surely. Note that is the Radon–Nikodym derivative of with respect to .
Expected shortfall can be generalized to a general class of coherent risk measures on spaces (Lp space) with a corresponding dual characterization in the corresponding dual space. The domain can be extended for more general Orlicz Hearts.
If the underlying distribution for is a continuous distribution then the expected shortfall is equivalent to the tail conditional expectation defined by .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides a market-oriented framework for analyzing the major financial decisions made by firms. It provides an introduction to valuation techniques, investment decisions, asset valuation, f
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
The course provides a market-oriented framework for analyzing the major financial decisions made by firms. It provides an introduction to valuation techniques, investment decisions, asset valuation, f
In financial mathematics, a risk measure is used to determine the amount of an asset or set of assets (traditionally currency) to be kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions, such as banks and insurance companies, acceptable to the regulator. In recent years attention has turned towards convex and coherent risk measurement. A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents portfolio returns.
Value at risk (VaR) is a measure of the risk of loss of investment/Capital. It estimates how much a set of investments might lose (with a given probability), given normal market conditions, in a set time period such as a day. VaR is typically used by firms and regulators in the financial industry to gauge the amount of assets needed to cover possible losses. For a given portfolio, time horizon, and probability p, the p VaR can be defined informally as the maximum possible loss during that time after excluding all worse outcomes whose combined probability is at most p.
In the fields of actuarial science and financial economics there are a number of ways that risk can be defined; to clarify the concept theoreticians have described a number of properties that a risk measure might or might not have. A coherent risk measure is a function that satisfies properties of monotonicity, sub-additivity, homogeneity, and translational invariance. Consider a random outcome viewed as an element of a linear space of measurable functions, defined on an appropriate probability space.
This paper proposes an algorithm to upper-bound maximal quantile statistics of a state function over the course of a Stochastic Differential Equation (SDE) system execution. This chance-peak problem is posed as a nonconvex program aiming to maximize the Va ...
In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method ...
2022
,
We tackle safe trajectory planning under Gaussian mixture model (GMM) uncertainty. Specifically, we use a GMM to model the multimodal behaviors of obstacles' uncertain states. Then, we develop a mixed-integer conic approximation to the chance-constrained t ...