Surface integralIn mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, one may integrate a scalar field (that is, a function of position which returns a scalar as a value) over the surface, or a vector field (that is, a function which returns a vector as value). If a region R is not flat, then it is called a surface as shown in the illustration.
Del in cylindrical and spherical coordinatesThis is a list of some vector calculus formulae for working with common curvilinear coordinate systems. This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by : it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by : it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
Volume elementIn mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form where the are the coordinates, so that the volume of any set can be computed by For example, in spherical coordinates , and so . The notion of a volume element is not limited to three dimensions: in two dimensions it is often known as the area element, and in this setting it is useful for doing surface integrals.
Vector operatorA vector operator is a differential operator used in vector calculus. Vector operators include the gradient, divergence, and curl: Gradient is a vector operator that operates on a scalar field, producing a vector field. Divergence is a vector operator that operates on a vector field, producing a scalar field. Curl is a vector operator that operates on a vector field, producing a vector field. Defined in terms of del: The Laplacian operates on a scalar field, producing a scalar field: Vector operators must always come right before the scalar field or vector field on which they operate, in order to produce a result.
Solenoidal vector fieldIn vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: A common way of expressing this property is to say that the field has no sources or sinks. The divergence theorem gives an equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero: where is the outward normal to each surface element.
Trace (linear algebra)In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of A. The trace is only defined for a square matrix (n × n). It can be proven that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proven that tr(AB) = tr(BA) for any two matrices A and B. This implies that similar matrices have the same trace.
Musical isomorphismIn mathematics—more specifically, in differential geometry—the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle and the cotangent bundle of a pseudo-Riemannian manifold induced by its metric tensor. There are similar isomorphisms on symplectic manifolds. The term musical refers to the use of the symbols (flat) and (sharp). In the notation of Ricci calculus, it is also known as raising and lowering indices.
Orthogonal coordinatesIn mathematics, orthogonal coordinates are defined as a set of d coordinates in which the coordinate hypersurfaces all meet at right angles (note that superscripts are indices, not exponents). A coordinate surface for a particular coordinate qk is the curve, surface, or hypersurface on which qk is a constant. For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.
Vector calculus identitiesThe following are important identities involving derivatives and integrals in vector calculus. Gradient For a function in three-dimensional Cartesian coordinate variables, the gradient is the vector field: where i, j, k are the standard unit vectors for the x, y, z-axes. More generally, for a function of n variables , also called a scalar field, the gradient is the vector field: where are orthogonal unit vectors in arbitrary directions. As the name implies, the gradient is proportional to and points in the direction of the function's most rapid (positive) change.
Differential of a functionIn calculus, the differential represents the principal part of the change in a function with respect to changes in the independent variable. The differential is defined by where is the derivative of f with respect to , and is an additional real variable (so that is a function of and ). The notation is such that the equation holds, where the derivative is represented in the Leibniz notation , and this is consistent with regarding the derivative as the quotient of the differentials.