In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of A. The trace is only defined for a square matrix (n × n).
It can be proven that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proven that tr(AB) = tr(BA) for any two matrices A and B. This implies that similar matrices have the same trace. As a consequence one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar.
The trace is related to the derivative of the determinant (see Jacobi's formula).
The trace of an n × n square matrix A is defined as
where aii denotes the entry on the ith row and ith column of A. The entries of A can be real numbers or (more generally) complex numbers. The trace is not defined for non-square matrices.
Expressions like tr(exp(A)), where A is a square matrix, occur so often in some fields (e.g. multivariate statistical theory), that a shorthand notation has become common:
tre is sometimes referred to as the exponential trace function; it is used in the Golden–Thompson inequality.
Let A be a matrix, with
Then
The trace is a linear mapping. That is,
for all square matrices A and B, and all scalars c.
A matrix and its transpose have the same trace:
This follows immediately from the fact that transposing a square matrix does not affect elements along the main diagonal.
The trace of a square matrix which is the product of two real matrices can be rewritten as the sum of entry-wise products of their elements, i.e. as the sum of all elements of their Hadamard product. Phrased directly, if A and B are two m × n real matrices, then:
If one views any m × n real matrix as a vector of length mn (an operation called vectorization) then the above operation on A and B coincides with the standard dot product.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
In mathematics, the tensor product of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map that maps a pair to an element of denoted An element of the form is called the tensor product of v and w. An element of is a tensor, and the tensor product of two vectors is sometimes called an elementary tensor or a decomposable tensor. The elementary tensors span in the sense that every element of is a sum of elementary tensors.
Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes challenging when the phases constituting the ...
Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine ...
This paper introduces a novel method for data-driven robust control of nonlinear systems based on the Koopman operator, utilizing Integral Quadratic Constraints (IQCs). The Koopman operator theory facilitates the linear representation of nonlinear system d ...