Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper i) compares parametric and semi-parametric representations of unobserved heterogeneity in hierarchical Bayesian logit models and ii) applies these methods to infer distributions of willingness to pay for features of shared automated vehicle (SAV ...
Tonality is one of the most central theoretical concepts for the analysis of Western classical music. This study presents a novel approach for the study of its historical development, exploring in particular the concept of mode. Based on a large dataset of ...
The use of smartphone sensing for public health studies is appealing to understand routines. We present an approach to learn nightlife routines in a smartphone sensing dataset volunteered by 184 young people (1586 weekend nights with location data captured ...
Liouville copulas introduced in McNeil and Ne lehova (2010) are asymmetric generalizations of the ubiquitous Archimedean copula class. They are the dependence structures of scale mixtures of Dirichlet distributions, also called Liouville distributions. In ...
2017
,
We propose a physically-consistent Bayesian non-parametric approach for fitting Gaussian Mixture Models (GMM) on trajectory data. Physical-consistency of the GMM is ensured by imposing a prior on the component assignments biased by a novel similarity metri ...
2018
, , ,
We consider the problem of sampling from constrained distributions, which has posed significant challenges to both non-asymptotic analysis and algorithmic design. We propose a unified framework, which is inspired by the classical mirror descent, to derive ...
2018
, , ,
We consider the problem of sampling from constrained distributions, which has posed significant challenges to both non-asymptotic analysis and algorithmic design. We propose a unified framework, which is inspired by the classical mirror descent, to derive ...
NEURAL INFORMATION PROCESSING SYSTEMS (NIPS)2018
, ,
We present a novel anomaly detection (AD) system for streaming videos. Different from prior methods that rely on unsupervised learning of clip representations, that are usually coarse in nature, and batch-mode learning, we propose the combination of two no ...
Small-variance asymptotics is emerging as a useful technique for inference in large-scale Bayesian non-parametric mixture models. This paper analyzes the online learning of robot manipulation tasks with Bayesian non-parametric mixture models under small-va ...
Small variance asymptotics is emerging as a useful technique for inference in large scale Bayesian non-parametric mixture models. This paper analyses the online learning of robot manipulation tasks with Bayesian non-parametric mixture models under small va ...