Georg von PeuerbachGeorg von Peuerbach (also Purbach, Peurbach; Purbachius; born May 30, 1423 – April 8, 1461) was an Austrian astronomer, poet, mathematician and instrument maker, best known for his streamlined presentation of Ptolemaic astronomy in the Theoricae Novae Planetarum. Peuerbach was instrumental in making astronomy, mathematics and literature simple and accessible for Europeans during the Renaissance and beyond. Peuerbach's life remains relatively unknown until he enrolled at the University of Vienna in 1446.
Elongation (astronomy)In astronomy, a planet's elongation is the angular separation between the Sun and the planet, with Earth as the reference point. The greatest elongation of a given inferior planet occurs when this planet's position, in its orbital path around the Sun, is at tangent to the observer on Earth. Since an inferior planet is well within the area of Earth's orbit around the Sun, observation of its elongation should not pose that much a challenge (compared to deep-sky objects, for example).
Celestial cartographyCelestial cartography, uranography, astrography or star cartography is the aspect of astronomy and branch of cartography concerned with mapping stars, galaxies, and other astronomical objects on the celestial sphere. Measuring the position and light of charted objects requires a variety of instruments and techniques. These techniques have developed from angle measurements with quadrants and the unaided eye, through sextants combined with lenses for light magnification, up to current methods which include computer-automated space telescopes.
Thābit ibn QurraThābit ibn Qurra (full name: Abū al-Ḥasan ibn Zahrūn al-Ḥarrānī al-Ṣābiʾ, أبو الحسن ثابت بن قرة بن زهرون الحراني الصابئ, Thebit/Thebith/Tebit); 826 or 836 – February 19, 901, was a polymath known for his work in mathematics, medicine, astronomy, and translation. He lived in Baghdad in the second half of the ninth century during the time of the Abbasid Caliphate. Thābit ibn Qurra made important discoveries in algebra, geometry, and astronomy. In astronomy, Thābit is considered one of the first reformers of the Ptolemaic system, and in mechanics he was a founder of statics.
Maragheh observatoryThe Maragheh observatory (Persian: رصدخانه مراغه), also spelled Maragha, Maragah, Marageh, and Maraga, was an astronomical observatory established in the mid 13th century under the patronage of the Ilkhanid Hulagu and the directorship of Nasir al-Din al-Tusi, a Persian scientist and astronomer. The observatory is located on the west side of Maragheh, which is situated in today's East Azerbaijan Province of Iran. It was considered one of the most advanced scientific institutions in Eurasia because it was a center for many groundbreaking calculations in mathematics and astronomy.
Astronomia novaAstronomia nova (English: New Astronomy, full title in original Latin: Astronomia Nova ΑΙΤΙΟΛΟΓΗΤΟΣ seu physica coelestis, tradita commentariis de motibus stellae Martis ex observationibus G.V. Tychonis Brahe) is a book, published in 1609, that contains the results of the astronomer Johannes Kepler's ten-year-long investigation of the motion of Mars. One of the most significant books in the history of astronomy, the Astronomia nova provided strong arguments for heliocentrism and contributed valuable insight into the movement of the planets.
HicetasHicetas (Ἱκέτας or Ἱκέτης; c. 400 – c. 335 BC) was a Greek philosopher of the Pythagorean School. He was born in Syracuse, Magna Graecia. Like his fellow Pythagorean Ecphantus and the Academic Heraclides Ponticus, he believed that the daily movement of permanent stars was caused by the rotation of the Earth around its axis. When Copernicus referred to Nicetus Syracusanus (Nicetus of Syracuse) in De revolutionibus orbium coelestium as having been cited by Cicero as an ancient who also argued that the Earth moved, it is believed that he was actually referring to Hicetas.
De sphaera mundiDe sphaera mundi (Latin title meaning On the Sphere of the World, sometimes rendered The Sphere of the Cosmos; the Latin title is also given as Tractatus de sphaera, Textus de sphaera, or simply De sphaera) is a medieval introduction to the basic elements of astronomy written by Johannes de Sacrobosco (John of Holywood) c. 1230. Based heavily on Ptolemy's Almagest, and drawing additional ideas from Islamic astronomy, it was one of the most influential works of pre-Copernican astronomy in Europe.
Sublunary sphereIn Aristotelian physics and Greek astronomy, the sublunary sphere is the region of the geocentric cosmos below the Moon, consisting of the four classical elements: earth, water, air, and fire. The sublunary sphere was the realm of changing nature. Beginning with the Moon, up to the limits of the universe, everything (to classical astronomy) was permanent, regular and unchanging—the region of aether where the planets and stars are located. Only in the sublunary sphere did the powers of physics hold sway.
Galileo affairThe Galileo affair (il processo a Galileo Galilei) began around 1610 and culminated with the trial and condemnation of Galileo Galilei by the Roman Catholic Inquisition in 1633. Galileo was prosecuted for his support of heliocentrism, the astronomical model in which the Earth and planets revolve around the Sun at the centre of the universe. In 1610, Galileo published his Sidereus Nuncius (Starry Messenger), describing the observations that he had made with his new, much stronger telescope, amongst them, the Galilean moons of Jupiter.