Paleomagnetism (occasionally palaeomagnetism) is the study of magnetic fields recorded in rocks, sediment, or archeological materials. Geophysicists who specialize in paleomagnetism are called paleomagnetists. Certain magnetic minerals in rocks can record the direction and intensity of Earth's magnetic field at the time they formed. This record provides information on the past behavior of the geomagnetic field and the past location of tectonic plates. The record of geomagnetic reversals preserved in volcanic and sedimentary rock sequences (magnetostratigraphy) provides a time-scale that is used as a geochronologic tool. Evidence from paleomagnetism led to the revival of the continental drift hypothesis and its transformation into the modern theory of plate tectonics. Apparent polar wander paths provided the first clear geophysical evidence for continental drift, while marine magnetic anomalies did the same for seafloor spreading. Paleomagnetic data continues to extend the history of plate tectonics back in time, constraining the ancient position and movement of continents and continental fragments (terranes). The field of paleomagnetism also encompasses equivalent measurements of samples from other Solar System bodies, such as Moon rocks and meteorites, where it is used to investigate the ancient magnetic fields of those bodies and dynamo theory. Paleomagnetism relies on developments in rock magnetism, and overlaps with biomagnetism, magnetic fabrics (used as strain indicators in rocks and soils), and environmental magnetism. History of geomagnetism As early as the 18th century, it was noticed that compass needles deviated near strongly magnetized outcrops. In 1797, Von Humboldt attributed this magnetization to lightning strikes (and lightning strikes do often magnetize surface rocks). In the 19th century studies of the direction of magnetization in rocks showed that some recent lavas were magnetized parallel to the Earth's magnetic field. Early in the 20th century, work by David, Brunhes and Mercanton showed that many rocks were magnetized antiparallel to the field.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (9)
MSE-432: Introduction to magnetic materials in modern technologies
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
PHYS-491: Magnetism in materials
The lectures will provide an introduction to magnetism in materials, covering fundamentals of spin and orbital degrees of freedom, interactions between moments and some typical ordering patterns. Sele
PHYS-201(b): General physics: electromagnetism
The course covers the phenomena, concepts and principles of electricity and magnetism illustrating some of their applications. The unity of the electric, magnetic and optical phenomena and the variety
Show more
Related lectures (56)
Isolated Magnetic Moments: Magnetic Susceptibility
Explores the concept of magnetic susceptibility as a tensor of proportionality between magnetization and the magnetizing field.
Experimental Techniques: Induction Magnetometers
Explores copper-based magnetometers for measuring magnetization and susceptibility using dynamic flux changes and different detector configurations.
Plasma Waves: Characteristics and Magnetization
Explores plasma wave characteristics in magnetized plasma and discusses Doppler shifted resonances.
Show more
Related publications (95)

Magnon-Assisted Magnetization Reversal of Ni81Fe19 Nanostripes on Y3Fe5O12 with Different Interfaces

Dirk Grundler, Andrea Mucchietto, Korbinian Baumgärtl

Magnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experimen ...
2024

A reduced-order, rotation-based model for thin hard-magnetic plates

Pedro Miguel Nunes Pereira de Almeida Reis, Dong Yan, Bastien Freddy Gustave Aymon

We develop a reduced-order model for thin plates made of hard magnetorheological elastomers (hard-MREs), which are composed of hard-magnetic particles embedded in a polymeric matrix. First, we propose a new magnetic potential, as an alternative to an exist ...
PERGAMON-ELSEVIER SCIENCE LTD2023

Magnonic crystals with reconfigurable magnetic defects for spin-based microwave electronics

Korbinian Baumgärtl

Collective spin excitations can propagate in magnetically ordered materials in the form of waves. These so-called spin waves (SWs) or magnons are promising for low-power beyond-CMOS information processing, which does not rely anymore on the lossy movement ...
EPFL2021
Show more
Related concepts (16)
Geomagnetic reversal
A geomagnetic reversal is a change in a planet's magnetic field such that the positions of magnetic north and magnetic south are interchanged (not to be confused with geographic north and geographic south). The Earth's field has alternated between periods of normal polarity, in which the predominant direction of the field was the same as the present direction, and reverse polarity, in which it was the opposite. These periods are called chrons. Reversal occurrences are statistically random.
Magnetic anomaly
In geophysics, a magnetic anomaly is a local variation in the Earth's magnetic field resulting from variations in the chemistry or magnetism of the rocks. Mapping of variation over an area is valuable in detecting structures obscured by overlying material. The magnetic variation (geomagnetic reversals) in successive bands of ocean floor parallel with mid-ocean ridges was important evidence for seafloor spreading, a concept central to the theory of plate tectonics. Magnetic anomalies are generally a small fraction of the magnetic field.
Magnetostratigraphy
Magnetostratigraphy is a geophysical correlation technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout the section. The samples are analyzed to determine their characteristic remanent magnetization (ChRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. This is possible because volcanic flows acquire a thermoremanent magnetization and sediments acquire a depositional remanent magnetization, both of which reflect the direction of the Earth's field at the time of formation.
Show more
Related MOOCs (2)
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.