Concept

Distributed computing

Summary
A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another. Distributed computing is a field of computer science that studies distributed systems. The components of a distributed system interact with one another in order to achieve a common goal. Three significant challenges of distributed systems are: maintaining concurrency of components, overcoming the lack of a global clock, and managing the independent failure of components. When a component of one system fails, the entire system does not fail. Examples of distributed systems vary from SOA-based systems to massively multiplayer online games to peer-to-peer applications. A computer program that runs within a distributed system is called a distributed program, and distributed programming is the process of writing such programs. There are many different types of implementations for the message passing mechanism, including pure HTTP, RPC-like connectors and message queues. Distributed computing also refers to the use of distributed systems to solve computational problems. In distributed computing, a problem is divided into many tasks, each of which is solved by one or more computers, which communicate with each other via message passing. The word distributed in terms such as "distributed system", "distributed programming", and "distributed algorithm" originally referred to computer networks where individual computers were physically distributed within some geographical area. The terms are nowadays used in a much wider sense, even referring to autonomous processes that run on the same physical computer and interact with each other by message passing. While there is no single definition of a distributed system, the following defining properties are commonly used as: There are several autonomous computational entities (computers or nodes), each of which has its own local memory. The entities communicate with each other by message passing.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (21)
CS-448: Sublinear algorithms for big data analysis
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
FIN-525: Financial big data
The course introduces modern methods to acquire, clean, and analyze large quantities of financial data efficiently. The second part expands on how to apply these techniques and robust statistics to fi
CS-451: Distributed algorithms
Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machin
Show more