Summary
In statistics, normality tests are used to determine if a data set is well-modeled by a normal distribution and to compute how likely it is for a random variable underlying the data set to be normally distributed. More precisely, the tests are a form of model selection, and can be interpreted several ways, depending on one's interpretations of probability: In descriptive statistics terms, one measures a goodness of fit of a normal model to the data – if the fit is poor then the data are not well modeled in that respect by a normal distribution, without making a judgment on any underlying variable. In frequentist statistics statistical hypothesis testing, data are tested against the null hypothesis that it is normally distributed. In Bayesian statistics, one does not "test normality" per se, but rather computes the likelihood that the data come from a normal distribution with given parameters μ,σ (for all μ,σ), and compares that with the likelihood that the data come from other distributions under consideration, most simply using a Bayes factor (giving the relative likelihood of seeing the data given different models), or more finely taking a prior distribution on possible models and parameters and computing a posterior distribution given the computed likelihoods. A normality test is used to determine whether sample data has been drawn from a normally distributed population (within some tolerance). A number of statistical tests, such as the Student's t-test and the one-way and two-way ANOVA, require a normally distributed sample population. An informal approach to testing normality is to compare a histogram of the sample data to a normal probability curve. The empirical distribution of the data (the histogram) should be bell-shaped and resemble the normal distribution. This might be difficult to see if the sample is small. In this case one might proceed by regressing the data against the quantiles of a normal distribution with the same mean and variance as the sample.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.