Résumé
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale. Ces tests prennent une place importante en statistiques. En effet, de nombreux tests supposent la normalité des distributions pour être applicables. En toute rigueur, il est indispensable de vérifier la normalité avant d'utiliser les tests. Cependant, de nombreux tests sont suffisamment robustes pour être utilisables même si les distributions s'écartent de la loi normale. Il est possible de visualiser la forme de la distribution des données à analyser en les représentant sous forme d'histogramme puis de comparer la forme de cet histogramme avec une courbe représentant une loi normale (les paramètres de cette loi étant calculés à partir des données à analyser). Ceci ne permet pas de conclure à la normalité des données mais peut donner une idée du type de loi sous-jacente : loi normale, loi de Cauchy ou loi de Student si la distribution semble symétrique, loi log-normale, loi gamma, loi de Weibull, loi exponentielle ou loi bêta si la distribution est asymétrique. center|Comparaison de deux échantillons de 5000 tirages : à gauche, un tirage selon la loi normale centrée réduite, à droite, un tirage selon une loi décentrée (convolution de deux lois normales non centrées). Il est également possible de représenter l'histogramme des résidus (c'est-à-dire la différence entre la distribution observée et la loi normale). Les résidus doivent suivre également une loi normale. Une boîte à moustaches permet de visualiser rapidement la symétrie de la distribution des données réelles et la présence de valeurs atypiques. center Droite de Henry On peut représenter l'adéquation à une loi normale visuellement en se rapprochant d'un modèle linéaire par calcul des quantiles.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.