Digital Enhanced Cordless Telecommunications, usually known by the acronym DECT, is a standard primarily used for creating cordless telephone systems. It originated in Europe, where it is the common standard, replacing earlier cordless phone standards, such as 900 MHz CT1 and CT2. Beyond Europe, it has been adopted by Australia and most countries in Asia and South America. North American adoption was delayed by United States radio-frequency regulations. This forced development of a variation of DECT called DECT 6.0, using a slightly different frequency range, which makes these units incompatible with systems intended for use in other areas, even from the same manufacturer. DECT has almost completely replaced other standards in most countries where it is used, with the exception of North America. DECT was originally intended for fast roaming between networked base stations, and the first DECT product was Net3 wireless LAN. However, its most popular application is single-cell cordless phones connected to traditional analog telephone, primarily in home and small-office systems, though gateways with multi-cell DECT and/or DECT repeaters are also available in many private branch exchange (PBX) systems for medium and large businesses, produced by Panasonic, Mitel, Gigaset, Ascom, Cisco, Grandstream, Snom, Spectralink, and RTX. DECT can also be used for purposes other than cordless phones, such as baby monitors and industrial sensors. The ULE Alliance's DECT ULE and its "HAN FUN" protocol are variants tailored for home security, automation, and the internet of things (IoT). The DECT standard includes the (GAP), a common interoperability profile for simple telephone capabilities, which most manufacturers implement. GAP-conformance enables DECT handsets and bases from different manufacturers to interoperate at the most basic level of functionality, that of making and receiving calls. Japan uses its own DECT variant, J-DECT, which is supported by the DECT forum.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
EE-733: Design and Optimization of Internet-of-Things Systems
This course provides a complete overview of the most relevant subfields related to Internet of Things (IoT) systems, it presents the perspectives and the underlying technologies, with a particular foc
COM-302: Principles of digital communications
This course is on the foundations of digital communication. The focus is on the transmission problem (rather than being on source coding).
EE-442: Wireless receivers: algorithms and architectures
The students will learn about the basic principles of wireless communication systems, including transmission and modulation schemes as well as the basic components and algorithms of a wireless receive
Show more
Related lectures (20)
Multi-Carrier Modulation: Wireless Receivers
Explores Multi-Carrier Modulation for wireless receivers, discussing wideband signal generation and the impact of multipath channels.
OFDM: Orthogonal Frequency Division Multiplexing
Covers the importance and implementation of OFDM in modern communication systems, focusing on synchronization, interference reduction, and packet detection.
OFDM Channel Estimation
Explores OFDM channel estimation for wireless receivers, emphasizing the importance of accurate estimation in wireless communication systems.
Show more
Related publications (74)

High-Quality Data Enabling Universality of Band Gap Descriptor and Discovery of Photovoltaic Perovskites

Alfredo Pasquarello, Haiyuan Wang, Wei Chen

Extensive machine-learning-assisted research has been dedicated to predicting band gaps for perovskites, driven by their immense potential in photovoltaics. Yet, the effectiveness is often hampered by the lack of high-quality band gap data sets, particular ...
Amer Chemical Soc2024

WINC: A Wireless IoT Network for Multi-Noise Source Cancellation

Haitham Al Hassanieh, Jiaming Wang, Junfeng Guan

This paper introduces Wireless IoT-based Noise Cancellation (WINC) which defines a framework for leveraging a wireless network of IoT microphones to enhance active noise cancellation in noise-canceling headphones. The IoT microphones forward ambient noise ...
New York2023

Design Methodology for Wideband Bowtie Patch Antenna for 5G mmWave Applications

Anja Skrivervik, Abolfazl Azari

Millimeter wave (mmWave) frequencies has become a research area of interest in recent years because of providing broad available bandwidth and thus higher data rates. Wideband mmWave antenna is one of the important development areas in wireless communicati ...
IEEE2023
Show more
Related concepts (17)
Radio
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
Wireless
Wireless communication (or just wireless, when the context allows) is the transfer of information (telecommunication) between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications.
Ultra high frequency
Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter (one decimeter). Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF (very high frequency) or lower bands.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.