**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Nuclear structure

Summary

Understanding the structure of the atomic nucleus is one of the central challenges in nuclear physics.
Semi-empirical mass formula
The liquid drop model is one of the first models of nuclear structure, proposed by Carl Friedrich von Weizsäcker in 1935. It describes the nucleus as a semiclassical fluid made up of neutrons and protons, with an internal repulsive electrostatic force proportional to the number of protons. The quantum mechanical nature of these particles appears via the Pauli exclusion principle, which states that no two nucleons of the same kind can be at the same state. Thus the fluid is actually what is known as a Fermi liquid.
In this model, the binding energy of a nucleus with protons and neutrons is given by
where is the total number of nucleons (Mass Number). The terms proportional to and represent the volume and surface energy of the liquid drop, the term proportional to represents the electrostatic energy, the term proportional to represents the Pauli exclusion principle and the last term is the pairing term, which lowers the energy for even numbers of protons or neutrons.
The coefficients and the strength of the pairing term may be estimated theoretically, or fit to data.
This simple model reproduces the main features of the binding energy of nuclei.
The assumption of nucleus as a drop of Fermi liquid is still widely used in the form of Finite Range Droplet Model (FRDM), due to the possible good reproduction of nuclear binding energy on the whole chart, with the necessary accuracy for predictions of unknown nuclei.
Nuclear shell model
The expression "shell model" is ambiguous in that it refers to two different items. It was previously used to describe the existence of nucleon shells according to an approach closer to what is now called mean field theory.
Nowadays, it refers to a formalism analogous to the configuration interaction formalism used in quantum chemistry.
Systematic measurements of the binding energy of atomic nuclei show systematic deviations with respect to those estimated from the liquid drop model.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (3)

Related publications (83)

Related people (35)

Related units (13)

Related concepts (8)

Related lectures (19)

MICRO-530: Nanotechnology

This course gives the basics for understanding nanotechnology from an engineer's perspective: physical background, materials aspects and scaling laws, fabrication and imaging of nanoscale devices.

MSE-100: Materials structure

Ce cours met en relation les différents niveaux de structuration de la matière avec les propriétés mécaniques, thermiques, électriques, magnétiques et optiques des matériaux.
Des travaux pratiques en

CH-353: Introduction to electronic structure methods

Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat

Atomic Structure: From Democritus to Quantum Mechanics

Covers the historical development of atomic theory to quantum mechanics, including subatomic particles, nucleus structure, and quantum principles.

Size Extensivity and Consistency in Quantum Chemistry

Explores size extensivity and consistency in quantum chemistry, post-Hartree-Fock methods, and perturbed wavefunction expansion.

Atomic Structure: Electronic Configuration

Explores the electronic configuration of atoms, including orbitals, energy levels, and the periodic table of elements.

Atomic nucleus

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force.

Interacting boson model

The interacting boson model (IBM) is a model in nuclear physics in which nucleons (protons or neutrons) pair up, essentially acting as a single particle with boson properties, with integral spin of either 2 (d-boson) or 0 (s-boson). They correspond to a quintuplet and singlet, i.e. 6 states. It is sometimes known as the Interacting boson approximation (IBA). The IBM1/IBM-I model treats both types of nucleons the same and considers only pairs of nucleons coupled to total angular momentum 0 and 2, called respectively, s and d bosons.

Many-body problem

The many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of many interacting particles. Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. Many can be anywhere from three to infinity (in the case of a practically infinite, homogeneous or periodic system, such as a crystal), although three- and four-body systems can be treated by specific means (respectively the Faddeev and Faddeev–Yakubovsky equations) and are thus sometimes separately classified as few-body systems.

The most promising solution towards cementitious materials with a lower carbon footprint is the partial substitution of the clinker by supplementary cementitious materials (SCMs) such as fly ash, blast furnace slag, limestone and calcined clays. The produc ...

Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Vladimir Petrov, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer

The azimuthal anisotropy of gamma(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The gamma(1S) mesons are reconstructed using their dimuon ...

Jiri Vanicek, Alan Scheidegger, Nikolay Golubev

Using a combination of high-level ab initio electronic structure methods with efficient on-the-fly semiclassical evaluation of nuclear dynamics, we performed a massive scan of small polyatomic molecules searching for a long-lasting oscillatory dynamics of ...