Ikaite is the mineral name for the hexahydrate of calcium carbonate, . Ikaite tends to form very steep or spiky pyramidal crystals, often radially arranged, of varied sizes from thumbnail size aggregates to gigantic salient spurs. It is only found in a metastable state and decomposes rapidly by losing most of its water content once removed from near-freezing water. This "melting mineral" is more commonly known through its pseudomorphs.
It is usually considered a rare mineral, but this is likely due to difficulty in preserving samples. It was first discovered in nature by the Danish mineralogist Pauly in the Ikka (then spelt Ika) fjord in southwest Greenland, close to Ivittuut, the locality of the famous cryolite deposit. Here ikaite occurs in truly spectacular towers or columns (up to tall) growing out of the fjord floor towards the surface water, where they are naturally truncated by waves, or unnaturally by the occasional boat. At the Ikka Fjord, it is supposed that the ikaite towers are created as the result of a groundwater seep, rich in carbonate and bicarbonate ions, entering the fjord bottom in the form of springs, where it hits the marine fjord waters rich in calcium. Ikaite has also been reported as occurring in high-latitude marine sediments at Bransfield Strait, Antarctica; Sea of Okhotsk, Eastern Siberia, off Sakhalin; and Saanich Inlet, British Columbia, Canada. In addition it has been reported in a deep sea fan off the Congo, and therefore probably has worldwide occurrence. The most recent occurrence has been reported by Dieckmann et al. (2008). They found the mineral ikaite directly precipitated in grain sizes of hundreds of micrometers in sea ice in the Weddell Sea and throughout fast ice off Adélie Land, Antarctica. In addition, ikaite can also form large crystals within sediment that grow to macroscopic size, occasionally with good crystal form. There is strong evidence that some of these marine deposits are associated with cold seeps. Ikaite has also been reported as a cryogenic deposit in caves where it precipitates from freezing carbonate-rich water.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Monohydrocalcite is a mineral that is a hydrous form of calcium carbonate, CaCO3·H2O. It was formerly also known by the name hydrocalcite, which is now discredited by the IMA. It is a trigonal mineral which is white when pure. Monohydrocalcite is not a common rock-forming mineral, but is frequently associated with other calcium and magnesium carbonate minerals, such as calcite, aragonite, lansfordite, and nesquehonite. Monohydrocalcite has been observed in air conditioning systems, and in moonmilk deposits in caves, both probably formed from spray of carbonate rich fluids.
Aragonite is a carbonate mineral and one of the three most common naturally occurring crystal forms of calcium carbonate (), the others being calcite and vaterite. It is formed by biological and physical processes, including precipitation from marine and freshwater environments. The crystal lattice of aragonite differs from that of calcite, resulting in a different crystal shape, an orthorhombic crystal system with acicular crystal. Repeated twinning results in pseudo-hexagonal forms.
Stromatolites have been extensively used as indicators of ancient life on Earth. Although much work has been done on modern stromatolites, the extent to which biological processes control their structure, and the respective contributions of biological and ...
Treatment by accelerated carbonation has been widely studied to enhance the quality of recycled concrete aggregates (RCA) and hence the performance of new concrete produced with the RCA. This is often ascribed to the densification of RCA. This study invest ...
Formation of nacre (mother-of-pearl) is a biomineralization process of fundamental scientific as well as industrial importance. However, the dynamics of the formation process is still not understood. Here, we use scanning electron microscopy and high spati ...