A diesel multiple unit or DMU is a multiple-unit train powered by on-board diesel engines. A DMU requires no separate locomotive, as the engines are incorporated into one or more of the carriages. Diesel-powered single-unit railcars are also generally classed as DMUs. Diesel-powered units may be further classified by their transmission type: diesel–mechanical DMMU, diesel–hydraulic DHMU, or diesel–electric DEMU.
The diesel engine may be located above the frame in an engine bay or under the floor. Driving controls can be at both ends, on one end, or in a separate car.
DMUs are usually classified by the method of transmitting motive power to their wheels.
In a diesel–mechanical multiple unit (DMMU), the rotating energy of the engine is transmitted via a gearbox and driveshaft directly to the wheels of the train, like a car. The transmissions can be shifted manually by the driver, as in the great majority of first-generation British Rail DMUs, but in most applications, gears are changed automatically.
In a diesel–hydraulic multiple unit (DHMU), a hydraulic torque converter, a type of fluid coupling, acts as the transmission medium for the motive power of the diesel engine to turn the wheels. Some units feature a hybrid mix of hydraulic and mechanical transmissions, usually reverting to the latter at higher operating speeds as this decreases engine RPM and noise.
In a diesel–electric multiple unit (DEMU), a diesel engine drives an electrical generator or an alternator which produces electrical energy. The generated current is then fed to electric traction motors on the wheels or bogies in the same way as a conventional diesel–electric locomotive.
On some DEMUs, such as the Bombardier Voyager, each car is entirely self-contained and has its own engine, generator and electric motors. In other designs, such as the British Rail Class 207 or the Stadler GTW and Stadler FLIRT DMU, some cars within the consist may be entirely unpowered or only feature electric motors, obtaining electric current from other cars in the consist which have a generator and engine.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
A locomotive or engine is a rail transport vehicle that provides the motive power for a train. If a locomotive is capable of carrying a payload, it is usually rather referred to as a multiple unit, motor coach, railcar or power car; the use of these self-propelled vehicles is increasingly common for passenger trains, but rare for freight. Traditionally, locomotives pulled trains from the front. However, push-pull operation has become common, where the train may have a locomotive (or locomotives) at the front, at the rear, or at each end.
A railcar (not to be confused with a railway car) is a self-propelled railway vehicle designed to transport passengers. The term "railcar" is usually used in reference to a train consisting of a single coach (carriage, car), with a driver's cab at one or both ends. Some railway companies, such as the Great Western, termed such vehicles "railmotors" (or "rail motors"). Self-propelled passenger vehicles also capable of hauling a train are, in technical rail usage, more usually called "rail motor coaches" or "motor cars" (not to be confused with the motor cars, otherwise known as automobiles, that operate on roads).
A diesel locomotive is a type of railway locomotive in which the power source is a diesel engine. Several types of diesel locomotives have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels. The most common are diesel-electric locomotives (usually faster, more powerful types of locomotives) and diesel-hydraulic (some shunting types). Early internal combustion locomotives and railcars used kerosene and gasoline as their fuel.
The shipping industry was responsible for about 3% of global greenhouse gas (GHG) emissions in 2018. In this context, the International Maritime Organisation (IMO) has established stringent targets to reduce GHG emissions by at least 50% by 2050 compared t ...
Universidad de Las Palmas de Gran Canaria2023
, , ,
This dataset contains particle number concentrations and a pollution flag in 1 min time resolution. It is derived by the pollution detection algorithm (PDA, doi:10.5281/zenodo.5761101) based on the corrected particle number concentration data of the CPC377 ...
EPFL Infoscience2023
, , ,
This dataset contains a pollution flag in 1 min time resolution. It is derived by the pollution detection algorithm (PDA) based on the corrected particle number concentration data (DOI upcoming) measured during the year long MOSAiC expedition from October ...