Lecture

Bias-Variance Trade-off

In course
DEMO: Lorem ut veniam consequat
Do ullamco sunt id esse mollit adipisicing incididunt laborum eu do velit mollit dolor. Esse commodo laborum irure non. Proident veniam dolor veniam mollit ullamco laborum in deserunt consectetur fugiat in tempor. Quis sunt elit officia mollit adipisicing esse nisi dolore esse pariatur. Enim cillum dolor velit qui dolor voluptate aute in. Cupidatat cupidatat velit commodo fugiat nulla.
Login to see this section
Description

This lecture delves into the bias-variance trade-off in machine learning, exploring how model complexity impacts prediction quality. It explains how bias measures prediction accuracy, variance assesses prediction consistency, and noise sets a lower bound on error. By finding the right balance between bias and variance, a model can achieve optimal prediction performance. The instructor illustrates this concept through a detailed analysis of the bias, variance, and noise components, showing how they interact to determine the overall prediction error. The lecture concludes by emphasizing the importance of selecting a model complexity that minimizes both bias and variance to achieve accurate and consistent predictions.

Instructors (2)
est eiusmod nisi velit
Voluptate culpa velit tempor non do eiusmod incididunt velit velit veniam. Quis officia sit amet aliquip. Culpa non sit non fugiat ex occaecat adipisicing laboris mollit laborum occaecat. Sit dolore aute cillum est duis excepteur nulla laborum irure consectetur commodo deserunt.
ipsum tempor id non
Irure pariatur tempor consequat veniam officia quis non officia nisi velit sint. Adipisicing nostrud cillum enim velit commodo magna ex consequat irure culpa commodo esse sit. Occaecat est adipisicing amet adipisicing amet sint excepteur labore anim proident. Culpa incididunt sint adipisicing cupidatat commodo cupidatat cupidatat mollit mollit consectetur quis do veniam sit.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (75)
Bias-Variance Tradeoff in Machine Learning
Explores the Bias-Variance tradeoff in machine learning, emphasizing the balance between bias and variance in model predictions.
Bias-Variance Tradeoff in Machine Learning
Explores the Bias-Variance tradeoff in machine learning, emphasizing the need to balance bias and variance for optimal model performance.
Flexibility of Models & Bias-Variance Trade-Off
Delves into the trade-off between model flexibility and bias-variance in error decomposition, polynomial regression, KNN, and the curse of dimensionality.
Linear Regression and Logistic Regression
Covers linear and logistic regression for regression and classification tasks, focusing on loss functions and model training.
Model Evaluation
Explores underfitting, overfitting, hyperparameters, bias-variance trade-off, and model evaluation in machine learning.
Show more