Résumé
350px|thumb|right|Les points stationnaires de la fonction sont marquées par des ronds rouges. Dans ce cas, ce sont des extrema locaux. Les carrés bleus désignent les points d'inflexion. En analyse réelle, un point stationnaire ou point critique d'une fonction dérivable d'une variable réelle est un point de son graphe où sa dérivée s'annule. Visuellement, cela se traduit par un point où la fonction arrête de croître ou de décroître. Pour une fonction de plusieurs variables réelles, un point stationnaire (critique) est un point où le gradient s'annule. Les points stationnaires sont simples à visualiser sur une représentation graphique : dans le cas d'une variable, ce sont les points où les droites tangentes sont horizontales (parallèles à l'axe des abscisses x). Pour une fonction de deux variables, de façon similaire, ces points sont ceux où le plan tangent est parallèle au plan xy. Le terme point stationnaire d'une fonction peut être confondu avec le point critique pour une projection donnée du graphe de la fonction. Le concept de "point critique" est plus large : un point stationnaire d'une fonction correspond à un point critique de son graphe pour la projection parallèle à l'axe x. D'un autre côté, les points critiques d'un graphe pour la projection parallèle de l'axe y sont les points où la dérivée n'est pas définie (plus précisément, quand elle tend vers l'infini). Certains auteurs confondent donc les deux notions. Un point tournant est un point où la dérivée change de signe. Un point tournant peut être un maximum ou un minimum local. SI la fonction est dérivable en ce point, alors un point tournant est un point stationnaire ; la réciproque est fausse : si la fonction est dérivable deux fois, les points stationnaires mais non tournants sont des points d'inflexion horizontaux. Un exemple simple est donnée par : le point x=0 est un point stationnaire et un point d'inflexion, mais n'est pas un point tournant.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.