Matrix mechanicsMatrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum jumps supplanted the Bohr model's electron orbits. It did so by interpreting the physical properties of particles as matrices that evolve in time. It is equivalent to the Schrödinger wave formulation of quantum mechanics, as manifest in Dirac's bra–ket notation.
Wigner–Weyl transformIn quantum mechanics, the Wigner–Weyl transform or Weyl–Wigner transform (after Hermann Weyl and Eugene Wigner) is the invertible mapping between functions in the quantum phase space formulation and Hilbert space operators in the Schrödinger picture. Often the mapping from functions on phase space to operators is called the Weyl transform or Weyl quantization, whereas the inverse mapping, from operators to functions on phase space, is called the Wigner transform.
Method of quantum characteristicsQuantum characteristics are phase-space trajectories that arise in the phase space formulation of quantum mechanics through the Wigner transform of Heisenberg operators of canonical coordinates and momenta. These trajectories obey the Hamilton equations in quantum form and play the role of characteristics in terms of which time-dependent Weyl's symbols of quantum operators can be expressed. In the classical limit, quantum characteristics reduce to classical trajectories.
Canonical commutation relationIn quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, between the position operator x and momentum operator px in the x direction of a point particle in one dimension, where [x , px] = x px − px x is the commutator of x and px , i is the imaginary unit, and ħ is the reduced Planck's constant h/2π, and is the unit operator.
Canonical quantizationIn physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the greatest extent possible. Historically, this was not quite Werner Heisenberg's route to obtaining quantum mechanics, but Paul Dirac introduced it in his 1926 doctoral thesis, the "method of classical analogy" for quantization, and detailed it in his classic text Principles of Quantum Mechanics.
Paul DiracPaul Adrien Maurice Dirac (dɪˈræk; 8 August 1902 – 20 October 1984) was an English theoretical physicist who is considered to be one of the founders of quantum mechanics and quantum electrodynamics. He was the Lucasian Professor of Mathematics at the University of Cambridge, a professor of physics at Florida State University and the University of Miami, and a 1933 Nobel Prize in Physics recipient. Dirac made fundamental contributions to the early development of both quantum mechanics and quantum electrodynamics.