Superconducting quantum computingSuperconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs (quantum processing units, or quantum chips) utilize superconducting architecture.
Quantum Zeno effectThe quantum Zeno effect (also known as the Turing paradox) is a feature of quantum-mechanical systems allowing a particle's time evolution to be slowed down by measuring it frequently enough with respect to some chosen measurement setting. Sometimes this effect is interpreted as "a system cannot change while you are watching it". One can "freeze" the evolution of the system by measuring it frequently enough in its known initial state.
Fredkin gateThe Fredkin gate (also CSWAP gate and conservative logic gate) is a computational circuit suitable for reversible computing, invented by Edward Fredkin. It is universal, which means that any logical or arithmetic operation can be constructed entirely of Fredkin gates. The Fredkin gate is a circuit or device with three inputs and three outputs that transmits the first bit unchanged and swaps the last two bits if, and only if, the first bit is 1. The basic Fredkin gate is a controlled swap gate that maps three inputs (C, I1, I2) onto three outputs (C, O1, O2).
Amplitude amplificationAmplitude amplification is a technique in quantum computing which generalizes the idea behind Grover's search algorithm, and gives rise to a family of quantum algorithms. It was discovered by Gilles Brassard and Peter Høyer in 1997, and independently rediscovered by Lov Grover in 1998. In a quantum computer, amplitude amplification can be used to obtain a quadratic speedup over several classical algorithms. The derivation presented here roughly follows the one given by Brassard et al. in 2000.
Fidelity of quantum statesIn quantum mechanics, notably in quantum information theory, fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other. The fidelity is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space. Given two density operators and , the fidelity is generally defined as the quantity . In the special case where and represent pure quantum states, namely, and , the definition reduces to the squared overlap between the states: .
Quantum registerIn quantum computing, a quantum register is a system comprising multiple qubits. It is the quantum analogue of the classical processor register. Quantum computers perform calculations by manipulating qubits within a quantum register. It is usually assumed that the register consists of qubits. It is also generally assumed that registers are not density matrices, but that they are pure, although the definition of "register" can be extended to density matrices. An size quantum register is a quantum system comprising pure qubits.